scholarly journals Astronomical bounds on the modified Chaplygin gas as a unified dark fluid model

2019 ◽  
Vol 623 ◽  
pp. A28
Author(s):  
Hang Li ◽  
Weiqiang Yang ◽  
Liping Gai

The modified Chaplygin gas could be considered to abide by the unified dark fluid model because the model might describe the past decelerating matter dominated era and at present time it provides an accelerating expansion of the Universe. In this paper, we have employed the Planck 2015 cosmic microwave background anisotropy, type-Ia supernovae, observed Hubble parameter data sets to measure the full parameter space of the modified Chaplygin gas as a unified dark matter and dark energy model. The model parameters Bs, α, and B determine the evolutional history of this unified dark fluid model by influencing the energy density ρMCG = ρMCG0[Bs + (1 − Bs)a−3(1 + B)(1 + α)]1/(1 + α). We assumed the pure adiabatic perturbation of unified modified Chaplygin gas in the linear perturbation theory. In the light of Markov chain Monte Carlo method, we find that Bs = 0.727+0.040+0.075−0.039−0.079, α = −0.0156+0.0982+0.2346−0.1380−0.2180, B = 0.0009+0.0018+0.0030−0.0017−0.0030 at 2σ level. The model parameters α and B are very close to zero and the nature of unified dark energy and dark matter model is very similar to cosmological standard model ΛCDM.

2019 ◽  
Vol 97 (2) ◽  
pp. 117-124 ◽  
Author(s):  
M. Salti ◽  
O. Aydogdu ◽  
A. Tas ◽  
K. Sogut ◽  
E.E. Kangal

We investigate cosmological features of the variable Chaplygin gas (VCG) describing a unified dark matter–energy scenario in a universe governed by the five dimensional (5D) Kaluza–Klein (KK) gravity. In such a proposal, the VCG evolves from the dust-like phase to the phantom or the quintessence phases. It is concluded that the background evolution for the KK-type VCG definition is equivalent to that for the dark energy interacting with the dark matter. Next, after performing neo-classical tests, we calculated the proper, luminosity, and angular diameter distances. Additionally, we construct a connection between the VCG in the KK universe and a homogenous minimally coupled scalar field by introducing its self-interacting potential and also we confirm the stability of the KK-type VCG model by making use of thermodynamics. Moreover, we use data from type Ia supernova, observational H(z) dataset and Planck-2015 results to place constraints on the model parameters. Subsequently, according to the best-fit values of the model parameters we analyze our results numerically.


2006 ◽  
Vol 15 (09) ◽  
pp. 1455-1472 ◽  
Author(s):  
S. ARBABI BIDGOLI ◽  
M. SADEGH MOVAHED ◽  
S. RAHVAR

In this paper we investigate a simple parametrization scheme of the quintessence model given by Wetterich [Phys. Lett. B594, 17 (2004)]. The crucial parameter of this model is the bending parameter b, which is related to the amount of dark energy in the early universe. Using the linear perturbation and the spherical infall approximations, we investigate the evolution of matter density perturbations in the variable dark energy model, and obtain an analytical expression for the growth index f. We show that increasing b leads to less growth of the density contrast δ, and also decreases the growth index. Giving a fitting formula for the growth index at the present time, we verify that the approximation relation [Formula: see text] also holds in this model. To compare predictions of the model with observations, we use the Supernovae type Ia (SNIa) Gold Sample and the parameters of the large scale structure determined by the 2-degree Field Galaxy Redshift Survey (2dFGRS). The best fit values for the model parameters by marginalizing on the remained ones, are [Formula: see text], [Formula: see text] and [Formula: see text] at 1σ confidence level. As a final test we calculate the age of universe for different choices of the free parameters in this model and compare it with the age of old stars and some high redshift objects. Then we show that the predictions of this variable dark energy model are consistent with the age observation of old star and can solve the "age crisis" problem.


2011 ◽  
Vol 20 (03) ◽  
pp. 281-297 ◽  
Author(s):  
M. MALEKJANI ◽  
A. KHODAM-MOHAMMADI

In this work, we investigate the holographic dark energy model with a new infrared cutoff (new HDE model), proposed by Granda and Oliveros. Using this new definition for the infrared cutoff, we establish the correspondence between the new HDE model and the standard Chaplygin gas (SCG), generalized Chaplygin gas (GCG) and modified Chaplygin gas (MCG) scalar field models in a nonflat universe. The potential and dynamics for these scalar field models, which describe the accelerated expansion of the universe, are reconstructed. According to the evolutionary behavior of the new HDE model, we derive the same form of dynamics and potential for the different SCG, GCG and MCG models. We also calculate the squared sound speed of the new HDE model as well as the SCG, GCG and MCG models, and investigate the new HDE Chaplygin gas models from the viewpoint of linear perturbation theory. In addition, all results in the nonflat universe are discussed in the limiting case of the flat universe, i.e. k = 0.


2004 ◽  
Vol 13 (04) ◽  
pp. 669-693 ◽  
Author(s):  
R. COLISTETE ◽  
J. C. FABRIS ◽  
S. V. B. GONÇALVES ◽  
P. E. DE SOUZA

The type Ia supernovae observational data are used to estimate the parameters of a cosmological model with cold dark matter and the Chaplygin gas. This exotic gas, which is characterized by a negative pressure varying with the inverse of density, represents in this model the dark energy responsible for the acceleration of the Universe. The Chaplygin gas model depends essentially on four parameters: the Hubble constant, the velocity of the sound of the Chaplygin gas, the curvature of the Universe and the fraction density of the Chaplygin gas and the cold dark matter. The Bayesian parameter estimation yields [Formula: see text] and [Formula: see text]. These and other results indicate that a Universe completely dominated by the Chaplygin gas is favoured, what reinforces the idea that the Chaplygin gas may unify the description for dark matter and dark energy, at least as the type Ia supernovae data are concerned. A closed and accelerating Universe is also favoured. The Bayesian statistics indicates that the Chaplygin gas model is more likely than the standard cosmological constant (ΛCDM) model at 55.3% confidence level when an integration on all free parameters is performed. Assuming the spatially flat curvature, this percentage mounts to 65.3%. On the other hand, if the density of dark matter is fixed at zero value, the Chaplygin gas model becomes more preferred than the ΛCDM model at 91.8% confidence level. Finally, the hypothesis of flat Universe and baryonic matter (Ωb0=0.04) implies a Chaplygin gas model preferred over the ΛCDM at a confidence level of 99.4%.


2010 ◽  
Vol 25 (09) ◽  
pp. 737-747 ◽  
Author(s):  
JIANBO LU ◽  
LIXIN XU

We apply the type Ia supernovae union dataset and the baryon acoustic oscillations data at z = 0.2 and z = 0.35 to constrain variable Chaplygin gas (VCG) model as the unification of dark matter and dark energy. It is shown that the confidence levels for VCG model parameters are [Formula: see text]. And it indicates that the values of transition redshift and current deceleration parameter are: [Formula: see text]. In addition, we plot the evolution trajectory of the VCG model in the statefinder parameter r–s plane and show the discrimination between this scenario and other dark energy models.


2009 ◽  
Vol 18 (12) ◽  
pp. 1851-1862 ◽  
Author(s):  
LILI XING ◽  
YUANXING GUI ◽  
CHUNYAN WANG

We consider in this paper a variable modified Chaplygin gas (VMCG) model for describing the unification of dark energy and dark matter, in which dark energy interacts with dark matter. Concretely, the evolution of the VMCG model with interaction is discussed and the statefinder diagnostic for the model is performed. By analysis, we find that the effective state parameter of dark energy can cross the phantom divide wΛ= -1 and our universe will not end up with a Big Rip in the future. Furthermore, we perform a statefinder analysis on this scenario and show the discrimination between this scenario and other dark energy models.


2019 ◽  
Vol 97 (5) ◽  
pp. 477-486 ◽  
Author(s):  
Arkaprabha Majumdar ◽  
Surajit Chattopadhyay

Inspired by the work of Bamba et al. (Phys. Rev. D, 85, 104036 (2012)) the present paper reports a study on the reconstruction of modified holographic Ricci dark energy (MHRDE) in the framework of modified gravity taken as f(T) gravity. A correspondence between modified Chaplygin gas and MHRDE has also been considered and thereinafter the f(T) gravity has been reconstructed via reconstruction of the Hubble parameter. The reconstructed equation of state (EoS) parameter obtained this way has been found to be able to cross the phantom boundary. In the next phase of the work, a viable model of f(T) gravity has been considered and MHRDE has been discussed in this modified gravity frame. The EoS parameter due to the torsion contribution obtained this way has been found to behave like quintessence. The transition of the universe from the dark matter dominated to dark energy (DE) dominated phase is apparent from this model. Also, the model is exhibiting DE domination of the current universe. Finally, the statefinder hierarchy has been discussed through the statefinder and snap parameters. The model has been found to be able to attain the ΛCDM fixed point in the statefinder trajectory.


2020 ◽  
Vol 499 (4) ◽  
pp. 5598-5606
Author(s):  
Paxy George ◽  
Titus K Mathew

ABSTRACT Holographic Ricci dark energy evolving through its interaction with dark matter is a natural choice for the running vacuum energy model. We have analysed the relative significance of two versions of this model in the light of type Ia supernovae (SN1a), the Cosmic Microwave Background (CMB), the Baryonic Acoustic Oscillations (BAO), and Hubble data sets using the method Bayesian inferences. The first one, model 1, is the running holographic Ricci dark energy (rhrde) having a constant additive term in its density form and the second is one, model 2, having no additive constant, instead the interaction of rhrde with dark matter (ΛCDM) is accounted through a phenomenological coupling term. The Bayes factor of these models in comparison with the standard Lambda cold dark matter have been obtained by calculating the likelihood of each model for four different data combinations, SNIa(307)+CMB+BAO, SNIa(307)+CMB+BAO+Hubble data, SNIa(580)+CMB+BAO, and SNIa(580)+CMB+BAO+Hubble data. Suitable flat priors for the model parameters has been assumed for calculating the likelihood in both cases. Our analysis shows that, according to the Jeffreys scale, the evidence for ΛCDM against both model 1 and model 2 is very strong as the Bayes factor of both models are much less than one for all the data combinations.


2019 ◽  
Vol 16 (11) ◽  
pp. 1950171
Author(s):  
Abdulla Al Mamon ◽  
Pritikana Bhandari ◽  
Subenoy Chakraborty

In this work, we have made an attempt to investigate the dark energy possibility from the thermodynamical point of view. For this purpose, we have studied thermodynamic stability of three popular dark energy models in the framework of an expanding, homogeneous, isotropic and spatially flat FRW Universe filled with dark energy and cold dark matter. The models considered in this work are Chevallier–Polarski–Linder (CPL) model, Generalized Chaplygin Gas (GCG) model and Modified Chaplygin Gas (MCG) model. By considering the cosmic components (dark energy and cold dark matter) as perfect fluid, we have examined the constraints imposed on the total equation of state parameter ([Formula: see text]) of the dark fluid by thermodynamics and found that the phantom nature ([Formula: see text]) is not thermodynamically stable. Our investigation indicates that the dark fluid models (CPL, GCG and MCG) are thermodynamically stable under some restrictions of the parameters of each model.


Sign in / Sign up

Export Citation Format

Share Document