scholarly journals Hot stars observed by XMM-Newton

2018 ◽  
Vol 619 ◽  
pp. A148 ◽  
Author(s):  
Yaël Nazé ◽  
Christian Motch

We perform a survey of Oe and Be stars in the X-ray range. To this aim, we cross-correlated XMM-Newton and Chandra catalogs of X-ray sources with a list of Be stars, finding 84 matches in total. Of these, 51 objects had enough counts for a spectral analysis. This paper provides the derived X-ray properties (X-ray luminosities, and whenever possible, hardness ratios, plasma temperatures, and variability assessment) of this largest ever sample of Oe and Be stars. The targets display a wide range in luminosity and hardness. In particular, the significant presence of very bright and hard sources is atypical for X-ray surveys of OB stars. Several types of sources are identified. A subset of stars display the typical characteristics of O-stars, magnetic OB stars, or pre-main-sequence (PMS) objects: their Be nature does not seem to play an important role. However, another subset comprises γ Cas analogs, which are responsible for the luminous and hard detections. Our sample contains seven known γ Cas analogs, but we also identify eight new γ Cas analogs and one γ Cas candidate. This nearly doubles the sample of such stars.

1980 ◽  
Vol 5 ◽  
pp. 525-531 ◽  
Author(s):  
Theodore P. Snow

AbstractReviews of the mass-loss characteristics of OB stars have been published recently, and the present review therefore emphasizes the A and F stars and very recent results on O and B stars. For the F stars, chromospheric indicators are present in the form of emission lines, seen in visible and ultraviolet wavelengths. Winds are present in A supergiants, but not in main sequence stars, although at least a few of the latter are X-ray sources, indicating the possible existence of coronae. Most OB supergiants are X-ray sources as well, indicating, along with the presence of super-ionization, that these stars have coronae. On the main sequence, the O stars and some B stars (including Be stars in many cases) have mass loss with highly-ionized species in the wind. The winds in the O and B stars are commonly variable. The mass-loss rates do not show a simple dependence on luminosity, contrary to the predictions for radiatively-driven winds.


1998 ◽  
Vol 185 ◽  
pp. 347-354 ◽  
Author(s):  
Dietrich Baade

Improved observing and data analysis strategies have initiated a considerable expansion of the empirical knowledge about the pulsations of OB stars. Possible correlations between physical parameters and associated pulsation characteristics are becoming more clearly perceivable. This starts to include the asteroseismologically fundamental areas of g-modes and rapid rotation. The β Cephei instability strip continues to be the only locus where radial pulsations occur (but apparently not in all stars located in that strip). Except for spectral types B8/B9 near the main sequence, where pulsations are hardly detected even at low amplitudes, any major group of stars in the Galaxy that are obviously not candidate pulsators still remains to be identified. However, the incidence and amplitudes of OB star pulsations decrease steeply with metallicity. The behaviour of high-luminosity stars is less often dominated by very few modes. In broad-lined stars the moving-bump phenomenon is more common than low-order line-profile variability. But its relation to nonradial pulsation is not clear. The beating of low-ℓ nonradial pulsation modes that have identical angular mode indices may be the clockwork of the outbursts of at least some Be stars. The physics of this episodic mass loss process remains to be identified.


1991 ◽  
Vol 143 ◽  
pp. 315-315 ◽  
Author(s):  
Ian D. Howarth ◽  
Alexander Brown

The mass-loss rates of O stars and B supergiants are of interest because of their influence on the evolution of these massive stars (among other matters). In principle, the ‘safest’ (i.e. most model-independent) method of determining M is to measure the free-free emission from stellar winds at radio wavelengths. This method is complicated, however, by the existence of poorly understood non-thermal emission in some stars, and by the possibility of hydrogen recombination in the winds of B supergiants.We are in the process of carrying out a VLA survey of OB stars, initially at 3.5cm, to a flux limit of ~0.1mJy. Because all our targets should have thermal emission at detectable levels (based on mass-loss rates from Howarth & Prinja 1989 and terminal velocities from Prinja, Barlow & Howarth 1990), the survey is yielding an unbiassed estimate of the frequency of non-thermal emission. The improved sensitivity of our survey over earlier work defines the log M – log L relationship much more precisely than was previously possible, over a large range in luminosities; and allows us to make definitive statements on recombination in B supergiant winds. Our sample includes the first radio detections of an OC star, of a massive X-ray binary, and of thermal emission from a main-sequence star.


1976 ◽  
Vol 70 ◽  
pp. 69-78 ◽  
Author(s):  
Geraldine J. Peters

In an attempt to shed some light on the origin of the material in the envelopes of Be stars, surface gravities were determined for 30 objects by comparing their observed profiles of Hγ and Hδ with those computed from the Princeton model atmospheres and the VCS theory of hydrogen line broadening. The program stars are predominately well-known Be stars and display a wide range of envelope spectra and v sin i. The mean and range in log g for the Be stars appear to be identical to that obtained from a similar analysis on non-Be stars. No correlation was found between log g and Hα emission strength or the strength and/or presence of emission of Fe II, O I λ 7774 Å, or the infrared Ca ii triplet. The suggestion made by Schild (1973) and Schild et al. (1974) that the extreme Be stars are in the post main sequence phase of rapid core contraction is weakened by the fact that there are several members of the class which have log g ≥ 3.8. All shell stars considered in the program appear to have low values of log g (≤3.5). Some possible explanations for this occurrence are discussed.


Particles ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 14 ◽  
Author(s):  
Dmitry Ofengeim ◽  
Dmitry Zyuzin

We reanalyse the X-ray spectrum of the PSR B0833–45 (the Vela pulsar) using the data of the Chandra space observatory. In contrast to previous works, we consider a wide range of possible masses and radii of the pulsar. The derived surface temperature of the star Ts∞=0.66−0.01+0.04MK (1σ level over the entire mass and radius range of our study) is consistent with earlier results. However, the preferable values of Vela’s mass and radius given by the spectral analysis are different from those used previously; they are consistent with modern equation of state models of neutron star matter. In addition, we evaluate the Vela’s surface temperature as a function of assumed values of its mass and radius. This allows us to analyse the neutrino cooling rates consistent with the evaluated surface temperatures and explore the additional restrictions that could be set on the Vela’s mass and radius using different versions of the neutron star cooling theory.


2009 ◽  
Vol 5 (S266) ◽  
pp. 470-473
Author(s):  
C. Martayan ◽  
D. Baade ◽  
Y. Frémat ◽  
J. Zorec

AbstractStar clusters are privileged laboratories for studying the evolution of massive stars (OB stars). One particularly interesting question concerns the phases during which the classical Be stars occur, which—unlike HAe/Be stars—are not pre-main-sequence objects, nor supergiants. Rather, they are extremely rapidly rotating B-type stars with a circumstellar decretion disk formed by episodic ejections of matter from the central star. To study the impact of mass, metallicity, and age on the Be phase, we observed Small Magellanic Cloud (SMC) open clusters with two different techniques: (i) with the ESO–WFI in slitless mode, which allowed us to find the brighter Be and other emission-line stars in 84 SMC open clusters, and (ii) with the VLT–FLAMES multifiber spectrograph to determine accurately the evolutionary phases of Be stars in the Be-star-rich SMC open cluster NGC 330. Based on a comparison to the Milky Way, a model of Be stellar evolution, appearance as a function of metallicity and mass, and spectral type is developed, involving the fractional critical rotation rate as a key parameter.


2000 ◽  
Vol 175 ◽  
pp. 156-169 ◽  
Author(s):  
David H. Cohen

AbstractI discuss the X-ray observations of Be stars, and how their properties compare to non-emission B stars. I focus on several specific stars that show high flux levels and variability but also report on several interesting survey results. The Be X-ray properties are discussed in the context of wind-shock X-ray emission from normal OB stars as well as in the context of general mechanisms that have been proposed to explain the Be phenomenon. Finally, I conclude with a discussion of the spectral diagnostics that will be available from the new generation of X-ray telescopes.


2010 ◽  
Vol 6 (S272) ◽  
pp. 433-444 ◽  
Author(s):  
Peter De Cat ◽  
Katrien Uytterhoeven ◽  
Juan Gutiérrez-Soto ◽  
Pieter Degroote ◽  
Sergio Simón-Díaz

AbstractThe region of the hot end of the main-sequence is hosting pulsating stars of different types and flavours. Pulsations are not only observed for Slowly pulsating B stars (mid to late B-type stars; high order g-modes) and β Cephei stars (early B-type stars; low order p/g-modes) but are also causing variability in Be stars and OB-supergiants. In this review we give an overview of the asteroseismic observations that are currently available for these types of stars. The first asteroseismic results were solely based on ground-based observations. Recently, the arrival of space-based data gathered by space missions like most, corot and kepler has led to important discoveries for massive stars, highlighting their excellent asteroseismic potential. We show that, despite the unprecedented precision of the space-based data, there is still a clear need for ground-based follow-up observations.


Author(s):  
Katherine V. Whittington

Abstract The electronics supply chain is being increasingly infiltrated by non-authentic, counterfeit electronic parts, whose use poses a great risk to the integrity and quality of critical hardware. There is a wide range of counterfeit parts such as leads and body molds. The failure analyst has many tools that can be used to investigate counterfeit parts. The key is to follow an investigative path that makes sense for each scenario. External visual inspection is called for whenever the source of supply is questionable. Other methods include use of solvents, 3D measurement, X-ray fluorescence, C-mode scanning acoustic microscopy, thermal cycle testing, burn-in technique, and electrical testing. Awareness, vigilance, and effective investigations are the best defense against the threat of counterfeit parts.


Sign in / Sign up

Export Citation Format

Share Document