Counterfeit Parts Recognition and Detection for Failure Analysts

Author(s):  
Katherine V. Whittington

Abstract The electronics supply chain is being increasingly infiltrated by non-authentic, counterfeit electronic parts, whose use poses a great risk to the integrity and quality of critical hardware. There is a wide range of counterfeit parts such as leads and body molds. The failure analyst has many tools that can be used to investigate counterfeit parts. The key is to follow an investigative path that makes sense for each scenario. External visual inspection is called for whenever the source of supply is questionable. Other methods include use of solvents, 3D measurement, X-ray fluorescence, C-mode scanning acoustic microscopy, thermal cycle testing, burn-in technique, and electrical testing. Awareness, vigilance, and effective investigations are the best defense against the threat of counterfeit parts.

2019 ◽  
Vol 91 (10) ◽  
pp. 7-15
Author(s):  
Tomasz Piwowarczyk ◽  
Marcin Korzeniowski ◽  
Dawid Majewski

This article explores the possibilities of using non-destructive ultrasonic techniques to analyze the quality of lapped braze-welded joints. The tests were performed for 4 material groups (DC03+ZE steel and X5CrNi18-19 steel, aluminum alloys AW-5754 and AW-6061, titanium Grade 2 and copper Cu-ETP). As part of the work, additional materials and joint processes and its parameters were selected (TIG, MIG, laser). The quality of joints was monitored using scanning acoustic microscopy. Based on the A-scan andC-scan images, potential joints imperfections were determined. The possibilities of using advanced ultrasonic techniques to analyze the quality of braze joints was assessed.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262460
Author(s):  
Gifty E. Acquah ◽  
Javier Hernandez-Allica ◽  
Cathy L. Thomas ◽  
Sarah J. Dunham ◽  
Erick K. Towett ◽  
...  

With the increasing popularity of local blending of fertilisers, the fertiliser industry faces issues regarding quality control and fertiliser adulteration. Another problem is the contamination of fertilisers with trace elements that have been shown to subsequently accumulate in the soil and be taken up by plants, posing a danger to the environment and human health. Conventional characterisation methods necessary to ensure the quality of fertilisers and to comply with local regulations are costly, time consuming and sometimes not even accessible. Alternatively, using a wide range of unamended and intentionally amended fertilisers this study developed empirical calibrations for a portable handheld X-ray fluorescence (pXRF) spectrometer, determined the reliability for estimating the macro and micro nutrients and evaluated the use of the pXRF for the high-throughput detection of trace element contaminants in fertilisers. The models developed using pXRF for Mg, P, S, K, Ca, Mn, Fe, Zn and Mo had R2 values greater or equal to 0.97. These models also performed well on validation, with R2 values greater or equal to 0.97 (except for Fe, R2val = 0.55) and slope values ranging from 0.81 to 1.44. A second set of models were developed with a focus on trace elements in amended fertilisers. The R2 values of calibration for Co, Ni, As, Se, Cd and Pb were greater than or equal to 0.80. At concentrations up to 1000 mg kg-1, good validation statistics were also obtained; R2 values ranged from 0.97–0.99, except in one instance. The regression coefficients of the validation also had good prediction in the range of 0–100 mg kg-1 (R2 values were from 0.78–0.99), but not as well at lower concentrations up to 20 mg kg-1 (R2 values ranged from 0.10–0.99), especially for Cd. This study has demonstrated that pXRF can measure several major (P, Ca) and micro (Mn, Fe, Cu) nutrients, as well as trace elements and potential contaminants (Cr, Ni, As) in fertilisers with high accuracy and precision. The results obtained in this study is good, especially considering that loose powders were scanned for a maximum of 90 seconds without the use of a vacuum pump.


2004 ◽  
Vol 443-444 ◽  
pp. 127-130
Author(s):  
Arnold C. Vermeulen ◽  
Rob Delhez

All methods of analyzing the broadening of XRD line profiles have to take into account two basic effects: broadening by the instrument - including the X-ray spectrum - and the characteristics of broadening by size effects and by lattice defects - including their interaction. These effects are handled in practice by a wide range of auxiliary assumptions. In this paper these assumptions and their quality with respect to "appropriateness of purpose" are listed and compared. By systematic ranking of these assumptions in accordance with their quality, a 2-dimensional map can be constructed that visualizes the differences in the quality of the assumptions. This 2-dimensional map brings a new viewpoint to the various methods for line profile analysis, because it enables a qualitative comparison of the assumptions of existing methods and new developments.


2015 ◽  
Vol 12 (104) ◽  
pp. 20141111 ◽  
Author(s):  
Maxim Erko ◽  
Osnat Younes-Metzler ◽  
Alexander Rack ◽  
Paul Zaslansky ◽  
Seth L. Young ◽  
...  

The metatarsal lyriform organ of the Central American wandering spider Cupiennius salei is its most sensitive vibration detector. It is able to sense a wide range of vibration stimuli over four orders of magnitude in frequency between at least as low as 0.1 Hz and several kilohertz. Transmission of the vibrations to the slit organ is controlled by a cuticular pad in front of it. While the mechanism of high-frequency stimulus transfer (above ca 40 Hz) is well understood and related to the viscoelastic properties of the pad's epicuticle, it is not yet clear how low-frequency stimuli (less than 40 Hz) are transmitted. Here, we study how the pad material affects the pad's mechanical properties and thus its role in the transfer of the stimulus, using a variety of experimental techniques, such as X-ray micro-computed tomography for three-dimensional imaging, X-ray scattering for structural analysis, and atomic force microscopy and scanning electron microscopy for surface imaging. The mechanical properties were investigated using scanning acoustic microscopy and nanoindentation. We show that large tarsal deflections cause large deformation in the distal highly hydrated part of the pad. Beyond this region, a sclerotized region serves as a supporting frame which resists the deformation and is displaced to push against the slits, with displacement values considerably scaled down to only a few micrometres. Unravelling the structural arrangement in such specialized structures may provide conceptual ideas for the design of new materials capable of controlling a technical sensor's specificity and selectivity, which is so typical of biological sensors.


2002 ◽  
Vol 124 (3) ◽  
pp. 336-342 ◽  
Author(s):  
Chiaki Miyasaka ◽  
Bernard R. Tittmann ◽  
Shun-Ichiro Tanaka

It is well known that the process of heating and then cooling dissimilar materials introduces considerable stress at and near the interface. In this article, first, the surface wave velocity distributions obtained with the Vz curve technique were found to compare well with residual stress distribution measured by the finely collimated X-ray diffraction technique. Second, a delamination was introduced at the interface. The Vz curve technique was then used again to measure the surface acoustic wave velocity along the interface. The defective specimens showed significantly different patterns of surface acoustic wave velocities. Thus, this study presents useful guidelines in discriminating between sound and defective ceramic/metal joints by scanning acoustic microscopy.


Author(s):  
Adam Benak ◽  
Roger Devaney

Abstract Scanning Acoustic Microscopy (SAM) is a very important tool in the evaluation of molded plastic electronic components. SAM is used to non-destructively determine the configuration and quality of components using ultrasonic sound waves and consequently is an important test step in the screening, Destructive Physical Analysis (DPA) or Failure Analysis (FA) of plastic components. SAM is performed in a water bath so if internal defects are open to the surface of the device they can fill with water and become invisible to SAM.


Author(s):  
Melanie S. Cajita ◽  
Marlyn C. Grancapal ◽  
Rudolf A. Sia

Abstract This paper describes how scanning acoustic microscopy can be used to inspect materials under the chamfer of electronic device packages. The technique involves the use of copper tape to locate the areas affected by the chamfer during X-ray radiography. The results are then correlated with known critical package and assembly geometries to determine how far parallel lapping should proceed to ensure that the areas of interest will become observable under acoustic microscopy without interfering with the functionality of the device.


Author(s):  
C. Miyasaka ◽  
B. R. Tittmann

Abstract Ever since the invention of the scanning acoustic microscope (SAM), a key objective has been the enhancement of the resolution in an interior image. Thus, an acoustic lens that can form an interior image with a shear wave has been designed. The use of this lens gives benefits such as an increase of lateral resolution in the interior image, a reduction in background noise caused by surface roughness, and a reduction of spherical aberration. Significantly, with the current trend towards microminiaturization of microelectronic packages, acoustic microscopy with higher resolution and removal of surface roughness can play an important role in diagnostic examinations and failure analysis. In this paper, applications for the lens in microelectronic IC packages will be summarized.


2008 ◽  
Vol 39-40 ◽  
pp. 193-196 ◽  
Author(s):  
Janina Setina ◽  
V. Akishins ◽  
L. Petersone

The new generation of high silica materials with high thermal resistance was created by leaching of chopped glass fibre. These materials with low thermal conductivity are inert to the majority of chemical reagents, resistant to organic and mineral acids, weak alkali, water and highpressure steam. High silica chopped strand mats are non-woven fabrics designed for using in a wide range of insulation and protection applications at temperature till 11000C. The technology and quality of leaching process of initial Si-Al-Na glass widely depends on quality of fibre surface characteristics, i.e., roughness of surface of glass filaments. The surface roughness of the fibre before leaching is a function of chemical durability, therefore it depend on content of Al2O3. The thermal conductivity (within 20…10000C) of chopped strand mats directly depends on the surface roughness. The morphology and compositional profiles of surface of glass fibre before and after leaching were investigated using AFM, SEM, X-ray microanalysis and X-ray powder diffractometer. The different defects for fibre with content of Al2O3 <2.5% and high roughness namely cracking and crystalline deposits of Na2SO4 on top and into pores of fiber after leaching have been identified. The presence of sodium ions on surface of fibre decreases the heat insulation properties of mats. The structure of glass filaments surface was investigated in order to clarify the influence of surface characteristics on thermal conductivity of high silica glass fibre non-woven fabrics.


2008 ◽  
Vol 273-276 ◽  
pp. 300-305 ◽  
Author(s):  
Lucia Suarez ◽  
Frans Leysen ◽  
C. Masquelier ◽  
D. Warichet ◽  
Yvan Houbaert

Steel is still the main construction material for automobiles, general equipment and industrial machinery. Hot dipping has been proven to be an excellent method of corrosion protection of steels for a wide range of applications worldwide. Coatings of Zn-Al alloys on steel sheet have high corrosion resistance due to the corrosion prevention ability from Zn and the passivation of Al Bath composition, immersion velocity/time and substrate composition are the hot dipping parameters that more influence on the thickness and corrosion resistance of the deposited coating. In order to study their influence small amounts of magnesium were added. Experiments were performed in a hot dipping simulator using different substrates, bath compositions and hot dipping parameters. Surface layers were characterised by: Scanning Electron Microscopy (SEM) and Energy dispersive X-Ray spectroscopy (EDX or EDS). Cyclic corrosion tests were performed in order to observe the corrosion resistance for different Zn-Al-Mg coatings. Results show that the microstructure and composition of the substrate strongly affect the desired coating properties. Nevertheless, the influence of the magnesium on coating thickness is relevant, increasing when added in small quantities in a molten bath of Zn-5wt %Al. The quality and microstructure of the coating is affected by the amount of Mg in the bath. Cyclic corrosion tests results show that the quality of the coating is affected by the amount of Mg in the bath.


Sign in / Sign up

Export Citation Format

Share Document