Stellar Population Models of Distant Radio Galaxies

1996 ◽  
Vol 175 ◽  
pp. 588-590
Author(s):  
D. Villani ◽  
S. Di Serego Alighieri

Stellar populations of high redshift radio galaxies (HzRG) (z up to 4.2) are the oldest stellar systems known, that is the ones formed at the earliest cosmological epochs. Therefore they are the best objects for providing us with information about the epoch of galaxy formation. The information on the stellar populations in HzRG are obtained from the study of their Integrated Spectral Energy Distribution (ISED) which are gathered both from spectra and integrated magnitudes. The most common approach for the interpretation of colors and spectral features of the energy distribution of galaxies is the Evolutionary Population Synthesis (EPS), which has been introduced for the first time by Tinsley in 1972. EPS models have often been used in the past to interpret the ISED of HzRG (Chambers & Charlot 1990; Lilly & Longair 1984; di Serego Alighieri et al. 1994) in order to draw conclusions on the age of the stellar populations and therefore on the epoch of galaxy formation. The results are sometimes conflicting and a number of very recent EPS models have become available (Bressan et al. 1995; Bruzual & Charlot 1993; Buzzoni 1989; Guiderdoni & Rocca-Volmerange 1987): we are therefore analysing the differences between the various EPS models with the aim of assessing their suitability to study the stellar population at early epochs. The EPS models assume for stars a given Initial Mass Function(IMF) as well as a Star Formation Rate (SFR). Then one can compute the number of stars with given mass present in the galaxy as a function of time. The position of each star in the HR diagram is determined by means of the isochrones, which are calculated from stellar evolutionary models. The ISED of a galaxy is obtained from the superposition of the spectra of single stars obtained from a stellar spectral library. Thus these models describe the galaxy ISED as a function of the time, giving a complete evolutionary picture.

2012 ◽  
Vol 8 (S295) ◽  
pp. 272-281 ◽  
Author(s):  
Claudia Maraston

AbstractModelling stellar populations in galaxies is a key approach to gain knowledge on the still elusive process of galaxy formation as a function of cosmic time. In this review, after a summary of the state-of-art, I discuss three aspects of the modelling, that are particularly relevant to massive galaxies, the focus of this symposium, at low and high-redshift. These are the treatment of the Thermally-Pulsating Asymptotic Giant Branch phase, evidences of an unusual Initial Mass Function, and the effect of modern stellar libraries on the model spectral energy distribution.


2019 ◽  
Vol 15 (S341) ◽  
pp. 287-288
Author(s):  
Hiroto Mitani ◽  
Naoki Yoshida ◽  
Kazuyuki Omukai ◽  
Takashi Hosokawa

AbstractWe calculate the spectral energy distribution of the first galaxies which contain pre-main-sequence stars by using the stellar evolution code Modules for Experiments in Stellar Astrophysics, the spectra model BT-Settl, and the stellar population synthesis code PEGASE. We calculate the galaxy spectral energy distribution for Salpeter Initial Mass Function. We find that very young first galaxies are bright also in mid-infrared, and the contribution of pre-main-sequence stars can be significant over 0.1 Myr after a star-formation episode.


2020 ◽  
Vol 500 (2) ◽  
pp. 1870-1883
Author(s):  
M L L Dantas ◽  
P R T Coelho ◽  
P Sánchez-Blázquez

ABSTRACT The ultraviolet (UV) upturn is characterized by an unexpected up-rise of the UV flux in quiescent galaxies between the Lyman limit and 2500 Å. By making use of colour–colour diagrams, one can subdivide UV bright red-sequence galaxies in two groups: UV weak and upturn. With these two groups, we propose a comparison between their stellar population properties with the goal of establishing differences and similarities between them. We make use of propensity score matching to mitigate potential biases between the two samples, by selecting similar objects in terms of redshift and stellar mass. Also, we take advantage of spectral energy distribution (SED) fitting results from magphys made available by the GAMA collaboration. The analyses are made by comparing the distributions from the SED fitting directly, as well as investigating the differences in correlations between their parameters, and finally by using principal component analysis. We explore important differences and similarities between UV weak and upturn galaxies in terms of several parameters, such as: metallicity, age, specific star formation rate, time of last burst of star-formation, to mention a few. Notable differences are those concerning (g − r) colour, metallicity, and time since last burst of star-formation: UV upturn are redder in the optical, more metallic, and their last burst of star-formation happened earlier in time. These differences suggest that UV upturn systems have shorter star-formation histories (i.e. have been evolving more passively) when compared to UV weak galaxies. Consequently, these last seem to have a higher diversity of stellar populations.


1994 ◽  
Vol 159 ◽  
pp. 21-24
Author(s):  
Sperello di Serego Alighieri ◽  
Andrea Cimatti

We present the results of recent spectro–polarimetry and imaging–polarimetry of distant radio galaxies which show: (1) broad polarized permitted emission lines, (2) narrow unpolarized forbidden emission lines, (3) a flat (in fλ) polarized UV continuum and (4) an absorption feature, probably interstellar. The direction of the E vector of polarization is always perpendicular to the optical/radio axis. These observations are strong evidence that these objects harbour a quasar, which is visible only through scattering by the interstellar medium of the galaxy. The continuum polarization drops to the red of the 4000Å break, suggesting dilution by an evolved stellar population. A two-component model made of a dust scattered quasar and an evolved stellar population reproduces well the polarization and the spectral energy distribution, including the IR data.


2019 ◽  
Vol 15 (S352) ◽  
pp. 194-198
Author(s):  
Christina C. Williams

AbstractWe discuss the serendipitous discovery of a dusty high-redshift galaxy in a small (8 arcmin2) ALMA 3-mm survey Williams et al. (2019). The galaxy was previously unknown and is absent from existing multi-wavelength catalogs (“ALMA-only”). Using the ALMA position as prior, we perform forced deblended photometry to constrain its spectral energy distribution. The spectral energy distribution is well described by a massive (M* = 1010.8 M⊙) and highly obscured (AV ∼ 4) galaxy at redshift z = 5.5 ± 1.1 with star formation rate ∼ 300 M⊙yr−1. Our small survey area implies an uncertain but large contribution to the cosmic star formation rate density, similar to the contribution from all ultraviolet-selected galaxies combined at this redshift. This galaxy likely traces an abundant population of massive galaxies absent from current samples of infrared-selected or sub-millimeter galaxies, but with larger space densities, higher duty cycles, and significant contribution to the cosmic star-formation rate and stellar mass densities.


2012 ◽  
Vol 8 (S295) ◽  
pp. 319-319
Author(s):  
Xiyan Peng ◽  
Cuihua Du ◽  
Zhenyu Wu

AbstractBased on BATC and SDSS photometric data, we adopt the spectral energy distribution (SED) fitting method to evaluate stellar metallicities in the Galaxy. We find that the mean metallicity shifts from metal-rich to metal-poor with the increase of distance from the Galactic Centre.


2020 ◽  
Vol 640 ◽  
pp. A67
Author(s):  
O. B. Kauffmann ◽  
O. Le Fèvre ◽  
O. Ilbert ◽  
J. Chevallard ◽  
C. C. Williams ◽  
...  

We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <  z <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log(M*/M⊙) > 6 and redshifts of 0 <  z <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z >  5 galaxy samples can be reduced to < 0.01 arcmin−2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <  z <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes mUV <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.


2019 ◽  
Vol 622 ◽  
pp. A103 ◽  
Author(s):  
M. Boquien ◽  
D. Burgarella ◽  
Y. Roehlly ◽  
V. Buat ◽  
L. Ciesla ◽  
...  

Context. Measuring how the physical properties of galaxies change across cosmic times is essential to understand galaxy formation and evolution. With the advent of numerous ground-based and space-borne instruments launched over the past few decades we now have exquisite multi-wavelength observations of galaxies from the far-ultraviolet (FUV) to the radio domain. To tap into this mine of data and obtain new insight into the formation and evolution of galaxies, it is essential that we are able to extract information from their spectral energy distribution (SED). Aims. We present a completely new implementation of Code Investigating GALaxy Emission (CIGALE). Written in python, its main aims are to easily and efficiently model the FUV to radio spectrum of galaxies and estimate their physical properties such as star formation rate, attenuation, dust luminosity, stellar mass, and many other physical quantities. Methods. To compute the spectral models, CIGALE builds composite stellar populations from simple stellar populations combined with highly flexible star formation histories, calculates the emission from gas ionised by massive stars, and attenuates both the stars and the ionised gas with a highly flexible attenuation curve. Based on an energy balance principle, the absorbed energy is then re-emitted by the dust in the mid- and far-infrared domains while thermal and non-thermal components are also included, extending the spectrum far into the radio range. A large grid of models is then fitted to the data and the physical properties are estimated through the analysis of the likelihood distribution. Results. CIGALE is a versatile and easy-to-use tool that makes full use of the architecture of multi-core computers, building grids of millions of models and analysing samples of thousands of galaxies, both at high speed. Beyond fitting the SEDs of galaxies and parameter estimations, it can also be used as a model-generation tool or serve as a library to build new applications.


2019 ◽  
Vol 631 ◽  
pp. A156 ◽  
Author(s):  
L. A. Díaz-García ◽  
A. J. Cenarro ◽  
C. López-Sanjuan ◽  
I. Ferreras ◽  
M. Cerviño ◽  
...  

Aims. Our aim is to determine the distribution of stellar population parameters (extinction, age, metallicity, and star formation rates) of quiescent galaxies within the rest-frame stellar mass–colour diagrams and UVJ colour–colour diagrams corrected for extinction up to z ∼ 1. These novel diagrams reduce the contamination in samples of quiescent galaxies owing to dust-reddened galaxies, and they provide useful constraints on stellar population parameters only using rest-frame colours and/or stellar mass. Methods. We set constraints on the stellar population parameters of quiescent galaxies combining the ALHAMBRA multi-filter photo-spectra with our fitting code for spectral energy distribution, MUlti-Filter FITting (MUFFIT), making use of composite stellar population models based on two independent sets of simple stellar population (SSP) models. The extinction obtained by MUFFIT allowed us to remove dusty star-forming (DSF) galaxies from the sample of red UVJ galaxies. The distributions of stellar population parameters across these rest-frame diagrams are revealed after the dust correction and are fitted by LOESS, a bi-dimensional and locally weighted regression method, to reduce uncertainty effects. Results. Quiescent galaxy samples defined via classical UVJ diagrams are typically contaminated by a ∼20% fraction of DSF galaxies. A significant part of the galaxies in the green valley are actually obscured star-forming galaxies (∼30–65%). Consequently, the transition of galaxies from the blue cloud to the red sequence, and hence the related mechanisms for quenching, seems to be much more efficient and faster than previously reported. The rest-frame stellar mass–colour and UVJ colour–colour diagrams are useful for constraining the age, metallicity, extinction, and star formation rate of quiescent galaxies by only their redshift, rest-frame colours, and/or stellar mass. Dust correction plays an important role in understanding how quiescent galaxies are distributed in these diagrams and is key to performing a pure selection of quiescent galaxies via intrinsic colours.


Sign in / Sign up

Export Citation Format

Share Document