scholarly journals Near-infrared observations of star formation and gas flows in the NUGA galaxy NGC 1365

2019 ◽  
Vol 622 ◽  
pp. A128 ◽  
Author(s):  
Nastaran Fazeli ◽  
Gerold Busch ◽  
Mónica Valencia-S. ◽  
Andreas Eckart ◽  
Michal Zajaček ◽  
...  

In the framework of understanding the gas and stellar kinematics and their relations to AGNs and galaxy evolution scenarios, we present spatially resolved distributions and kinematics of the stars and gas in the central ∼800 pc radius of the nearby Seyfert galaxy NGC 1365. We obtained H + K- and K-band near-infrared (NIR) integral-field observations from VLT/SINFONI. Our results reveal strong broad and narrow emission-line components of ionized gas (hydrogen recombination lines Paα and Brγ) in the nuclear region, as well as hot dust with a temperature of ∼1300 K, both typical for type-1 AGNs. From MBH − σ* and the broad components of hydrogen recombination lines, we find a black-hole mass of (5 − 10)×106 M⊙. In the central ∼800 pc, we find a hot molecular gas mass of ∼615 M⊙, which corresponds to a cold molecular gas reservoir of (2 − 8)×108 M⊙. However, there is a molecular gas deficiency in the nuclear region. The gas and stellar-velocity maps both show rotation patterns consistent with the large-scale rotation of the galaxy. However, the gaseous and stellar kinematics show deviations from pure disk rotation, which suggest streaming motions in the central < 200 pc and a velocity twist at the location of the ring which indicates deviations in disk and ring rotation velocities in accordance with published CO kinematics. We detect a blueshifted emission line split in Paα, associated with the nuclear region only. We investigate the star-formation properties of the hot spots in the circumnuclear ring which have starburst ages of ≲10 Myr and find indications for an age gradient on the western side of the ring. In addition, our high-resolution data reveal further substructure within this ring which also shows enhanced star forming activity close to the nucleus.

2012 ◽  
Vol 8 (S292) ◽  
pp. 199-208 ◽  
Author(s):  
Susanne Aalto

AbstractStudying the molecular phase of the interstellar medium in galaxies is fundamental for the understanding of the onset and evolution of star formation and the growth of supermassive black holes. We can use molecules as observational tools exploiting them as tracers of chemical, physical and dynamical conditions. In this short review, key molecules (e.g. HCN, HCO+, HNC, HC3N, CN, H3O+) in identifying the nature of buried activity and its evolution are discussed including some standard astrochemical scenarios. Furthermore, we can use IR excited molecular emission to probe the very inner regions of luminous infrared galaxies (LIRGs) allowing us to get past the optically thick dust barrier of the compact obscured nuclei, e.g. in the dusty LIRG NGC4418. High resolution studies are often necessary to separate effects of excitation and radiative transport from those of chemistry - one example is absorption and effects of stimulated emission in the ULIRG Arp220. Finally, molecular gas in large scale galactic outflows is briefly discussed.


2020 ◽  
Vol 644 ◽  
pp. A97
Author(s):  
D. Colombo ◽  
S. F. Sanchez ◽  
A. D. Bolatto ◽  
V. Kalinova ◽  
A. Weiß ◽  
...  

Understanding how galaxies cease to form stars represents an outstanding challenge for galaxy evolution theories. This process of “star formation quenching” has been related to various causes, including active galactic nuclei activity, the influence of large-scale dynamics, and the environment in which galaxies live. In this paper, we present the first results from a follow-up of CALIFA survey galaxies with observations of molecular gas obtained with the APEX telescope. Together with the EDGE-CARMA observations, we collected 12CO observations that cover approximately one effective radius in 472 CALIFA galaxies. We observe that the deficit of galaxy star formation with respect to the star formation main sequence (SFMS) increases with the absence of molecular gas and with a reduced efficiency of conversion of molecular gas into stars, which is in line with the results of other integrated studies. However, by dividing the sample into galaxies dominated by star formation and galaxies quenched in their centres (as indicated by the average value of the Hα equivalent width), we find that this deficit increases sharply once a certain level of gas consumption is reached, indicating that different mechanisms drive separation from the SFMS in star-forming and quenched galaxies. Our results indicate that differences in the amount of molecular gas at a fixed stellar mass are the primary drivers for the dispersion in the SFMS, and the most likely explanation for the start of star formation quenching. However, once a galaxy is quenched, changes in star formation efficiency drive how much a retired galaxy differs in its star formation rate from star-forming ones of similar masses. In other words, once a paucity of molecular gas has significantly reduced star formation, changes in the star formation efficiency are what drives a galaxy deeper into the red cloud, hence retiring it.


2020 ◽  
Vol 641 ◽  
pp. A151
Author(s):  
F. Salvestrini ◽  
C. Gruppioni ◽  
F. Pozzi ◽  
C. Vignali ◽  
A. Giannetti ◽  
...  

We present a multi-wavelength study (from X-ray to mm) of the nearby low-luminosity active galactic nucleus NGC 7213. We combine the information from the different bands to characterise the source in terms of contribution from the AGN and the host-galaxy interstellar medium. This approach allows us to provide a coherent picture of the role of the AGN and its impact, if any, on the star formation and molecular gas properties of the host galaxy. We focused our study on archival ALMA Cycle 1 observations, where the CO(2–1) emission line has been used as a tracer of the molecular gas. Using the 3DBAROLO code on ALMA data, we performed the modelling of the molecular gas kinematics traced by the CO(2–1) emission, finding a rotationally dominated pattern. The molecular gas mass of the host galaxy was estimated from the integrated CO(2–1) emission line obtained with APEX data, assuming an αCO conversion factor. Had we used the ALMA data, we would have underestimated the gas masses by a factor ∼3, given the filtering out of the large-scale emission in interferometric observations. We also performed a complete X-ray spectral analysis on archival observations, revealing a relatively faint and unobscured AGN. The AGN proved to be too faint to significantly affect the properties of the host galaxy, such as star formation activity and molecular gas kinematics and distribution.


2020 ◽  
Vol 638 ◽  
pp. A53
Author(s):  
Nastaran Fazeli ◽  
Gerold Busch ◽  
Andreas Eckart ◽  
Françoise Combes ◽  
Persis Misquitta ◽  
...  

Gas inflow processes in the vicinity of galactic nuclei play a crucial role in galaxy evolution and supermassive black hole growth. Exploring the central kiloparsec of galaxies is essential to shed more light on this subject. We present near-infrared H- and K-band results of the nuclear region of the nearby galaxy NGC 1326, observed with the integral-field spectrograph SINFONI mounted on the Very Large Telescope. The field of view covers 9″ × 9″ (650 × 650 pc2). Our work is concentrated on excitation conditions, morphology, and stellar content. The nucleus of NGC 1326 was classified as a LINER, however in our data we observed an absence of ionised gas emission in the central r ∼ 3″. We studied the morphology by analysing the distribution of ionised and molecular gas, and thereby detected an elliptically shaped, circum-nuclear star-forming ring at a mean radius of 300 pc. We estimate the starburst regions in the ring to be young with dominating ages of < 10 Myr. The molecular gas distribution also reveals an elongated east to west central structure about 3″ in radius, where gas is excited by slow or mild shock mechanisms. We calculate the ionised gas mass of 8 × 105 M⊙ completely concentrated in the nuclear ring and the warm molecular gas mass of 187 M⊙, from which half is concentrated in the ring and the other half in the elongated central structure. The stellar velocity fields show pure rotation in the plane of the galaxy. The gas velocity fields show similar rotation in the ring, but in the central elongated H2 structure they show much higher amplitudes and indications of further deviation from the stellar rotation in the central 1″ aperture. We suggest that the central 6″ elongated H2 structure might be a fast-rotating central disc. The CO(3–2) emission observations with the Atacama Large Millimeter/submillimeter Array reveal a central 1″ torus. In the central 1″ of the H2 velocity field and residual maps, we find indications for a further decoupled structure closer to a nuclear disc, which could be identified with the torus surrounding the supermassive black hole.


2020 ◽  
Vol 15 (S359) ◽  
pp. 170-172
Author(s):  
Rosemary T. Coogan ◽  
E. Daddi ◽  
R. Gobat ◽  
M. T. Sargent

AbstractThis work focuses on understanding the formation of the first massive, passive galaxies in clusters, as a first step to the development of environmental trends seen at low redshift. Cl J1449 + 0856 is an excellent case to study this - a galaxy cluster at redshift z = 1.99 that already shows evidence of a virialised atmosphere. Here we highlight two recent results: the discovery of merger-driven star formation and highly-excited molecular gas in galaxies at the core of Cl J1449, along with the lowest-mass Sunyaev-Zel’dovich detection to date.


2008 ◽  
Vol 4 (S255) ◽  
pp. 397-401
Author(s):  
David J. Rosario ◽  
Carlos Hoyos ◽  
David Koo ◽  
Andrew Phillips

AbstractWe present a study of remarkably luminous and unique dwarf galaxies at redshifts of 0.5 < z < 0.7, selected from the DEEP2 Galaxy Redshift survey by the presence of the temperature sensitive [OIII]λ4363 emission line. Measurements of this important auroral line, as well as other strong oxygen lines, allow us to estimate the integrated oxygen abundances of these galaxies accurately without being subject to the degeneracy inherent in the standard R23 system used by most studies. [O/H] estimates range between 1/5–1/10 of the solar value. Not surprisingly, these systems are exceedingly rare and hence represent a population that is not typically present in local surveys such as SDSS, or smaller volume deep surveys such as GOODS.Our low-metallicity galaxies exhibit many unprecedented characteristics. With B-band luminosities close to L*, thse dwarfs lie significantly away from the luminosity-metallicity relationships of both local and intermediate redshift star-forming galaxies. Using stellar masses determined from optical and NIR photometry, we show that they also deviate strongly from corresponding mass-metallicity relationships. Their specific star formation rates are high, implying a significant burst of recent star formation. A campaign of high resolution spectroscopic follow-up shows that our galaxies have dynamical properties similar to local HII and compact emission line galaxies, but mass-to-light ratios that are much higher than average star-forming dwarfs.The low metallicities, high specific star formation rates, and small halo masses of our galaxies mark them as lower redshift analogs of Lyman-Break galaxies, which, at z ~ 2 are evolving onto the metallicity sequence that we observe in the galaxy population of today. In this sense, these systems offer fundamental insights into the physical processes and regulatory mechanisms that drive galaxy evolution in that epoch of major star formation and stellar mass assembly.


1987 ◽  
pp. 628-628
Author(s):  
R. J. Allen ◽  
P. D. Atherton ◽  
R. P. J. Tilanus

2015 ◽  
Vol 11 (S315) ◽  
pp. 26-29
Author(s):  
Julia Kamenetzky ◽  
Naseem Rangwala ◽  
Jason Glenn ◽  
Philip Maloney ◽  
Alex Conley

AbstractMolecular gas is the raw material for star formation and is commonly traced by the carbon monoxide (CO) molecule. The atmosphere blocks all but the lowest-J transitions of CO for observatories on the ground, but the launch of the Herschel Space Observatory revealed the CO emission of nearby galaxies from J = 4−3 to J = 13−12. Herschel showed that mid- and high-J CO lines in nearby galaxies are emitted from warm gas, accounting for approximately 10% of the molecular mass, but the majority of the CO luminosity. The energy budget of this warm, highly-excited gas is a significant window into the feedback interactions among molecular gas, star formation, and galaxy evolution. Likely, mechanical heating is required to explain the excitation. Such gas has also been observed in star forming regions within our galaxy.We have examined all ~300 spectra of galaxies from the Herschel Fourier Transform Spectrometer and measured line fluxes or upper limits for the CO J = 4−3 to J = 13−12, [CI], and [NII] 205 micron lines in ~200 galaxies, taking systematic effects of the FTS into account. We will present our line fitting method, illustrate trends available so far in this large sample, and preview the full 2-component radiative transfer likelihood modeling of the CO emission using an illustrative sample of 20 galaxies, including comparisons to well-resolved galactic regions. This work is a comprehensive study of mid- and high-J CO emission among a variety of galaxy types, and can be used as a resource for future (sub)millimeter studies of galaxies with ground-based instruments.


2019 ◽  
Vol 485 (3) ◽  
pp. 3409-3429 ◽  
Author(s):  
R Gallagher ◽  
R Maiolino ◽  
F Belfiore ◽  
N Drory ◽  
R Riffel ◽  
...  

Abstract Several models have predicted that stars could form inside galactic outflows and that this would be a new major mode of galaxy evolution. Observations of galactic outflows have revealed that they host large amounts of dense and clumpy molecular gas, which provide conditions suitable for star formation. We have investigated the properties of the outflows in a large sample of galaxies by exploiting the integral field spectroscopic data of the large MaNGA-SDSS4 galaxy survey. We find evidence for prominent star formation occurring inside at least 30 per cent of the galactic outflows in our sample, whilst signs of star formation are seen in up to half of the outflows. We also show that even if star formation is prominent inside many other galactic outflows, this may have not been revealed as the diagnostics are easily dominated by the presence of even faint active galactic nucleus and shocks. If very massive outflows typical of distant galaxies and quasars follow the same scaling relations observed locally, then the star formation inside high-z outflows can be up to several 100 $\rm M_{\odot }~yr^{-1}$ and could contribute substantially to the early formation of the spheroidal component of galaxies. Star formation in outflows can also potentially contribute to establishing the scaling relations between black holes and their host spheroids. Moreover, supernovae exploding on large orbits can chemically enrich in situ and heat the circumgalactic and intergalactic medium. Finally, young stars ejected on large orbits may also contribute to the reionization of the Universe.


Sign in / Sign up

Export Citation Format

Share Document