scholarly journals Widespread star formation inside galactic outflows

2019 ◽  
Vol 485 (3) ◽  
pp. 3409-3429 ◽  
Author(s):  
R Gallagher ◽  
R Maiolino ◽  
F Belfiore ◽  
N Drory ◽  
R Riffel ◽  
...  

Abstract Several models have predicted that stars could form inside galactic outflows and that this would be a new major mode of galaxy evolution. Observations of galactic outflows have revealed that they host large amounts of dense and clumpy molecular gas, which provide conditions suitable for star formation. We have investigated the properties of the outflows in a large sample of galaxies by exploiting the integral field spectroscopic data of the large MaNGA-SDSS4 galaxy survey. We find evidence for prominent star formation occurring inside at least 30 per cent of the galactic outflows in our sample, whilst signs of star formation are seen in up to half of the outflows. We also show that even if star formation is prominent inside many other galactic outflows, this may have not been revealed as the diagnostics are easily dominated by the presence of even faint active galactic nucleus and shocks. If very massive outflows typical of distant galaxies and quasars follow the same scaling relations observed locally, then the star formation inside high-z outflows can be up to several 100 $\rm M_{\odot }~yr^{-1}$ and could contribute substantially to the early formation of the spheroidal component of galaxies. Star formation in outflows can also potentially contribute to establishing the scaling relations between black holes and their host spheroids. Moreover, supernovae exploding on large orbits can chemically enrich in situ and heat the circumgalactic and intergalactic medium. Finally, young stars ejected on large orbits may also contribute to the reionization of the Universe.

2020 ◽  
Vol 15 (S359) ◽  
pp. 391-395
Author(s):  
Sebastian F. Sánchez ◽  
Carlos Lopez Cobá

AbstractWe summarize here some of the results reviewed recently by Sanchez (2020) comprising the advances in the comprehension of galaxies in the nearby universe based on integral field spectroscopic galaxy surveys. In particular we explore the bimodal distribution of galaxies in terms of the properties of their ionized gas, showing the connection between the star-formation (quenching) process with the presence (absence) of molecular gas and the star-formation efficiency. We show two galaxy examples that illustrates the well known fact that ionization in galaxies (and the processes that produce it), does not happen monolitically at galactic scales. This highlight the importance to explore the spectroscopic properties of galaxies and the evolutionary processes unveiled by them at different spatial scales, from sub-kpc to galaxy wide.


2020 ◽  
Vol 15 (S359) ◽  
pp. 170-172
Author(s):  
Rosemary T. Coogan ◽  
E. Daddi ◽  
R. Gobat ◽  
M. T. Sargent

AbstractThis work focuses on understanding the formation of the first massive, passive galaxies in clusters, as a first step to the development of environmental trends seen at low redshift. Cl J1449 + 0856 is an excellent case to study this - a galaxy cluster at redshift z = 1.99 that already shows evidence of a virialised atmosphere. Here we highlight two recent results: the discovery of merger-driven star formation and highly-excited molecular gas in galaxies at the core of Cl J1449, along with the lowest-mass Sunyaev-Zel’dovich detection to date.


2012 ◽  
Vol 8 (S292) ◽  
pp. 199-208 ◽  
Author(s):  
Susanne Aalto

AbstractStudying the molecular phase of the interstellar medium in galaxies is fundamental for the understanding of the onset and evolution of star formation and the growth of supermassive black holes. We can use molecules as observational tools exploiting them as tracers of chemical, physical and dynamical conditions. In this short review, key molecules (e.g. HCN, HCO+, HNC, HC3N, CN, H3O+) in identifying the nature of buried activity and its evolution are discussed including some standard astrochemical scenarios. Furthermore, we can use IR excited molecular emission to probe the very inner regions of luminous infrared galaxies (LIRGs) allowing us to get past the optically thick dust barrier of the compact obscured nuclei, e.g. in the dusty LIRG NGC4418. High resolution studies are often necessary to separate effects of excitation and radiative transport from those of chemistry - one example is absorption and effects of stimulated emission in the ULIRG Arp220. Finally, molecular gas in large scale galactic outflows is briefly discussed.


2019 ◽  
Vol 491 (4) ◽  
pp. 4843-4851 ◽  
Author(s):  
Alessandro B Romeo

ABSTRACT We present a new set of galaxy scaling relations for the relative mass content of atomic gas, molecular gas, and stars. Such relations are driven by disc gravitational instability, and originate from the low galaxy-to-galaxy variance of Toomre’s Q stability parameter. We test such relations using more than 100 galaxies, from massive spirals to dwarf irregulars, thus spanning several orders of magnitude in stellar mass ($M_{\star }\approx 10^{6\rm {-}11}\, \mbox{M}_{\odot }$) and atomic gas mass ($M_{\rm{H\, \small {I}}}\approx 10^{7\rm {-}10.5}\, \mbox{M}_{\odot }$). Such tests demonstrate (i) that our scaling relations are physically motivated and tightly constrained, (ii) that the mass-averaged gravitational instability properties of galaxy discs are remarkably uniform across the sequence Sa–dIrr, and (iii) that specific angular momentum plays an important role in such a scenario. Besides providing new insights into a very important topic in galaxy evolution, this work provides a simple formula (equation 5) that one can use for generating other galaxy relations driven by disc instability. We explain how to do that, mention a few possible applications, and stress the importance of testing our approach further.


2020 ◽  
Vol 498 (4) ◽  
pp. 4745-4789
Author(s):  
S Jaiswal ◽  
A Omar

ABSTRACT The Giant Meter-wave Radio Telescope observations of the H i 21 cm-line emission from 13 nearby dwarf star-forming galaxies are presented. These galaxies are selected from the catalogues of Wolf−Rayet galaxies having very young (≤10 Myr) star formation. The ranges of star formation rates and stellar masses of the sample galaxies are 0.03–1.7 M⊙ yr−1 and 0.04–22.3 × 108 M⊙, respectively. The H i line emission is detected from 12 galaxies with peak column density >1 × 1021 cm−2. The 3σ H i column density sensitivities per channel width of 7 km s−1 for low (60 arcsec × 60 arcsec) resolution images are in the range 0.8–1.9 × 1019 cm−2. The H i channel images, moment images, global profiles, and mass surface density profiles are presented here. The average value of the peak H i mass surface density is estimated to be ∼2.5 M⊙ pc−2, which is significantly less compared to that in massive spiral galaxies. The scaling relations of $(M_{stars} + M_{\rm H\, I} + M_{\rm He})$versus Mdyn, gas fraction versus MB, $M_{\rm H\, I}$versus Mstars, H i-to-stellar mass ratio versus Mstars, and $M_{\rm H\, I}$versus $D_{\rm H\, I}$for the sample galaxies are estimated. These scaling relations can be used to constraint the key parameters in the galaxy evolution models. These galaxies are residing in group environment with galaxy density up to eight galaxy Mpc−3. An H i mass deficiency (with DEFH i > 0.3) is noticed in majority of galaxies for their optical diameters as compared to galaxies in field environments. Clear signatures of tidal interactions in these galaxies could be inferred using the H i images. Isolated H i clouds without known optical counterparts are seen in the vicinity of several galaxies. H i emission envelope is found to be having an offset from the optical envelope in several galaxies. Consistent with the previous studies on galaxy evolution in group environments, tidal interactions seem to play an important role in triggering recent star formation.


2015 ◽  
Vol 11 (S315) ◽  
pp. 26-29
Author(s):  
Julia Kamenetzky ◽  
Naseem Rangwala ◽  
Jason Glenn ◽  
Philip Maloney ◽  
Alex Conley

AbstractMolecular gas is the raw material for star formation and is commonly traced by the carbon monoxide (CO) molecule. The atmosphere blocks all but the lowest-J transitions of CO for observatories on the ground, but the launch of the Herschel Space Observatory revealed the CO emission of nearby galaxies from J = 4−3 to J = 13−12. Herschel showed that mid- and high-J CO lines in nearby galaxies are emitted from warm gas, accounting for approximately 10% of the molecular mass, but the majority of the CO luminosity. The energy budget of this warm, highly-excited gas is a significant window into the feedback interactions among molecular gas, star formation, and galaxy evolution. Likely, mechanical heating is required to explain the excitation. Such gas has also been observed in star forming regions within our galaxy.We have examined all ~300 spectra of galaxies from the Herschel Fourier Transform Spectrometer and measured line fluxes or upper limits for the CO J = 4−3 to J = 13−12, [CI], and [NII] 205 micron lines in ~200 galaxies, taking systematic effects of the FTS into account. We will present our line fitting method, illustrate trends available so far in this large sample, and preview the full 2-component radiative transfer likelihood modeling of the CO emission using an illustrative sample of 20 galaxies, including comparisons to well-resolved galactic regions. This work is a comprehensive study of mid- and high-J CO emission among a variety of galaxy types, and can be used as a resource for future (sub)millimeter studies of galaxies with ground-based instruments.


2020 ◽  
Vol 498 (2) ◽  
pp. 1560-1575 ◽  
Author(s):  
M E Jarvis ◽  
C M Harrison ◽  
V Mainieri ◽  
G Calistro Rivera ◽  
P Jethwa ◽  
...  

ABSTRACT We use a sample of powerful $z\, \approx \, 0.1$ type 2 quasars (‘obscured’; log [LAGN/erg s$^{-1}]\, \gtrsim \, 45$), which host kpc-scale ionized outflows and jets, to identify possible signatures of AGN feedback on the total molecular gas reservoirs of their host galaxies. Specifically, we present Atacama Pathfinder EXperiment (APEX) observations of the CO(2–1) transition for nine sources and the CO(6–5) for a subset of three. We find that the majority of our sample reside in starburst galaxies (average specific star formation rates – sSFR – of 1.7 Gyr−1), with the seven CO-detected quasars also having large molecular gas reservoirs (average Mgas = 1.3 × 1010 M⊙), even though we had no pre-selection on the star formation or molecular gas properties. Despite the presence of quasars and outflows, we find that the molecular gas fractions (Mgas/M⋆ = 0.1–1.2) and depletion times (Mgas/SFR = 0.16–0.95 Gyr) are consistent with those expected for the overall galaxy population with matched stellar masses and sSFRs. Furthermore, for at least two of the three targets with the required measurements, the CO(6–5)/CO(2–1) emission-line ratios are consistent with star formation dominating the CO excitation over this range of transitions. The targets in our study represent a gas-rich phase of galaxy evolution with simultaneously high levels of star formation and nuclear activity; furthermore, the jets and outflows do not have an immediate appreciable impact on the global molecular gas reservoirs.


2019 ◽  
Vol 15 (S352) ◽  
pp. 350-352
Author(s):  
Kathryn Grasha ◽  
Daniela Calzetti

AbstractStar formation provides insight into the physical processes that govern the transformation of gas into stars. A key missing piece in a predictive theory of star formation is the link between scales of individual stars and star clusters up to entire galaxies. LEGUS is now providing the information to test the overall organization and spatial evolution of star formation. We present our latest findings of using star clusters from LEGUS combined with ALMA CO observations to investigate the transition from molecular gas to star formation in local galaxies. This work paves the way for future JWST observations of the embedded phase of star formation, the last missing ingredient to connect young star clusters and their relation with gas reservoirs. Multi-wavelength studies of local galaxies and their stellar and gas components will help shed light on early phases of galaxy evolution and properties of the ISM at high-z.


1996 ◽  
Vol 171 ◽  
pp. 375-375
Author(s):  
Duncan Forbes ◽  
A. Phillips ◽  
D. Koo ◽  
G. Illingworth

Combining the results from Keck spectral and HST imaging data (Forbes et al. 1994), we have derived various quantitative parameters for 17 faint (I ∼ 21), distant (z ∼ 0.5) galaxies. Such redshifts correspond to a look–back time that is about half the age of the Universe and for which some scenarios predict significant galaxy evolution. We have measured disk scale lengths (with sizes ranging from 1–5 kpc) from fits to the surface brightness profiles and internal velocities with a rest frame resolution of σ = 55 to 80 km s–1 by fitting to the emission lines. The luminosity–disk size and luminosity–internal velocity relations for our moderate redshift galaxies are similar to the scaling relations seen for local galaxies, albeit with modest ΔMB ∼ 1m brightening. We do not see evidence for a dominant population of starbursting dwarf galaxies, that have disappeared by the present epoch. Further details of this study can be found in Forbes et al. (1995). When large samples of kinematic data on distant galaxies are available, we will be able to trace galaxy evolution by mass as distinct from light.


2019 ◽  
Vol 622 ◽  
pp. A128 ◽  
Author(s):  
Nastaran Fazeli ◽  
Gerold Busch ◽  
Mónica Valencia-S. ◽  
Andreas Eckart ◽  
Michal Zajaček ◽  
...  

In the framework of understanding the gas and stellar kinematics and their relations to AGNs and galaxy evolution scenarios, we present spatially resolved distributions and kinematics of the stars and gas in the central ∼800 pc radius of the nearby Seyfert galaxy NGC 1365. We obtained H + K- and K-band near-infrared (NIR) integral-field observations from VLT/SINFONI. Our results reveal strong broad and narrow emission-line components of ionized gas (hydrogen recombination lines Paα and Brγ) in the nuclear region, as well as hot dust with a temperature of ∼1300 K, both typical for type-1 AGNs. From MBH − σ* and the broad components of hydrogen recombination lines, we find a black-hole mass of (5 − 10)×106 M⊙. In the central ∼800 pc, we find a hot molecular gas mass of ∼615 M⊙, which corresponds to a cold molecular gas reservoir of (2 − 8)×108 M⊙. However, there is a molecular gas deficiency in the nuclear region. The gas and stellar-velocity maps both show rotation patterns consistent with the large-scale rotation of the galaxy. However, the gaseous and stellar kinematics show deviations from pure disk rotation, which suggest streaming motions in the central < 200 pc and a velocity twist at the location of the ring which indicates deviations in disk and ring rotation velocities in accordance with published CO kinematics. We detect a blueshifted emission line split in Paα, associated with the nuclear region only. We investigate the star-formation properties of the hot spots in the circumnuclear ring which have starburst ages of ≲10 Myr and find indications for an age gradient on the western side of the ring. In addition, our high-resolution data reveal further substructure within this ring which also shows enhanced star forming activity close to the nucleus.


Sign in / Sign up

Export Citation Format

Share Document