scholarly journals Variability in X-ray line ratios in helium-like ions of massive stars: the wind-driven case

2019 ◽  
Vol 625 ◽  
pp. A86 ◽  
Author(s):  
R. Ignace ◽  
Z. Damrau ◽  
K. T. Hole

Context. High spectral resolution and long exposure times are providing unprecedented levels of data quality of massive stars at X-ray wavelengths. Aims. A key diagnostic of the X-ray emitting plasma are the fir lines for He-like triplets. In particular, owing to radiative pumping effects, the forbidden-to-intercombination line luminosity ratio, R = f∕i, can be used to determine the proximity of the hot plasma to the UV-bright photospheres of massive stars. Moreover, the era of large observing programs additionally allows for investigation of line variability. Methods. This contribution is the second to explore how variability in the line ratio can provide new diagnostic information about distributed X-rays in a massive star wind. We focus on wind integration for total line luminosities, taking account of radiative pumping and stellar occultation. While the case of a variable stellar radiation field was explored in the first paper, the effects of wind variability are emphasized in this work. Results. We formulate an expression for the ratio of line luminosities f∕i that closely resembles the classic expression for the on-the-spot result. While there are many ways to drive variability in the line ratio, we use variable mass loss as an illustrative example for wind integration, particularly since this produces no variability for the on-the-spot case. The f∕i ratio can be significantly modulated owing to evolving wind properties. The extent of the variation depends on how the timescale for the wind flow compares to the timescale over which the line emissivities change. Conclusions. While a variety of factors can ellicit variable line ratios, a time-varying mass-loss rate serves to demonstrate the range of amplitude and phased-dependent behavior in f∕i line ratios. Importantly, we evaluate how variable mass loss might bias measures of f∕i. For observational exposures that are less than the timescale of variable mass loss, biased measures (relative to the time-averaged wind) can result; if exposures are long, the f∕i ratio is reflective of the time-averaged spherical wind.

2018 ◽  
Vol 14 (S346) ◽  
pp. 83-87
Author(s):  
Vikram V. Dwarkadas

AbstractMassive stars lose a considerable amount of mass during their lifetime. When the star explodes as a supernova (SN), the resulting shock wave expands in the medium created by the stellar mass-loss. Thermal X-ray emission from the SN depends on the square of the density of the ambient medium, which in turn depends on the mass-loss rate (and velocity) of the progenitor wind. The emission can therefore be used to probe the stellar mass-loss in the decades or centuries before the star’s death.We have aggregated together data available in the literature, or analysed by us, to compute the X-ray lightcurves of almost all young supernovae detectable in X-rays. We use this database to explore the mass-loss rates of massive stars that collapse to form supernovae. Mass-loss rates are lowest for the common Type IIP supernovae, but increase by several orders of magnitude for the highest luminosity X-ray SNe.


2014 ◽  
Vol 9 (S307) ◽  
pp. 449-450 ◽  
Author(s):  
Christopher Bard ◽  
Richard Townsend

AbstractIn the subset of massive OB stars with strong global magnetic fields, X-rays arise from magnetically confined wind shocks (Babel & Montmerle 1997). However, it is not yet clear what the effect of stellar rotation and mass-loss rate is on these wind shocks and resulting X-rays. Here, we present results from a grid of Arbitrary Rigid-Field Hydrodynamic simulations (ARFHD) of a B-star centrifugal magnetosphere with an eye towards quantifying the effect of stellar rotation and mass-loss rate on the level of X-ray emission. The results are also compared to a generalized XADM model for X-rays in dynamical magnetospheres (ud-Doula et al. 2014).


2007 ◽  
Vol 3 (S250) ◽  
pp. 89-96
Author(s):  
D. John Hillier

AbstractThe standard theory of radiation driven winds has provided a useful framework to understand stellar winds arising from massive stars (O stars, Wolf-Rayet stars, and luminous blue variables). However, with new diagnostics, and advances in spectral modeling, deficiencies in our understanding of stellar winds have been thrust to the forefront of our research efforts. Spectroscopic observations and analyses have shown the importance of inhomogeneities in stellar winds, and revealed that there are fundamental discrepancies between predicted and theoretical mass-loss rates. For late O stars, spectroscopic analyses derive mass-loss rates significantly lower than predicted. For all O stars, observed X-ray fluxes are difficult to reproduce using standard shock theory, while observed X-ray profiles indicate lower mass-loss rates, the potential importance of porosity effects, and an origin surprisingly close to the stellar photosphere. In O stars with weak winds, X-rays play a crucial role in determining the ionization balance, and must be taken into account.


1980 ◽  
Vol 5 ◽  
pp. 541-547
Author(s):  
H. F. Henrichs

A number of massive stars of early type is found in X-ray binary systems. The catalog of Bradt et al. (1979) contains 21 sources optically identified with massive stars ranging in spectral type from 06 to B5 out of which 13 are (nearly) unevolved stars and 8 are supergiants. Single stars of this type generally show moderate to strong stellar winds. The X-rays in these binaries originate from accretion onto a compact companion (we restrict the discussion to this type of X-rays).We consider the compact star as a probe traveling through the stellar wind. This probe enables us to derive useful information about the mass outflow of massive stars.After presenting the basic data we derive an upper limit to mass loss rates of unevolved early type stars by studying X-ray pulsars. Next we consider theoretical predictions concerning the influence of X-rays on the stellar wind and compare these with the observations. Finally, using new data from IUE, we draw some conclusions about mass loss rates and velocity laws as derived from X-ray binaries.


2010 ◽  
Vol 6 (S272) ◽  
pp. 348-353 ◽  
Author(s):  
David H. Cohen ◽  
Emma E. Wollman ◽  
Maurice A. Leutenegger

AbstractX-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high, that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars ζ Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).


2011 ◽  
Vol 7 (S279) ◽  
pp. 351-352
Author(s):  
Yoshitomo Maeda ◽  
Yasuharu Sugawara ◽  

AbstractBy monitoring WC7 and the O5.5 binary WR 140 with the Suzaku telescope, we demonstrate a new method to measure the mass loss rates of both stars. By using the absorption column density, we found a mass-loss rate for the WC7 component: ṀWC7 ≈ 1.2 × 10−5 M⊙ yr−1. We also measured the mass-loss rate of the companion O component using a luminosity variation in phases: ṀO5.5 ≈ 5 × 10−7 M⊙ yr−1.


2014 ◽  
Vol 9 (S307) ◽  
pp. 437-442
Author(s):  
Yaël Nazé ◽  
Véronique Petit ◽  
Melanie Rinbrand ◽  
David Cohen ◽  
Stan Owocki ◽  
...  

AbstractEarly-type stars are well-known to be sources of soft X-rays. However, this high-energy emission can be supplemented by bright and hard X-rays when magnetically confined winds are present. In an attempt to clarify the systematics of the observed X-ray properties of this phenomenon, a large series of Chandra and XMM observations was analyzed, over 100 exposures of 60% of the known magnetic massive stars listed recently by Petit et al. (2013). It is found that the X-ray luminosity is strongly correlated with mass-loss rate, in agreement with predictions of magnetically confined wind models, though the predictions of higher temperature are not always verified. We also investigated the behaviour of other X-ray properties (absorption, variability), yielding additional constraints on models. This work not only advances our knowledge of the X-ray emission of massive stars, but also suggests new observational and theoretical avenues to further explore magnetically confined winds.


2018 ◽  
Vol 620 ◽  
pp. A150 ◽  
Author(s):  
J. Krtička ◽  
J. Kubát ◽  
I. Krtičková

Context. In wind-powered X-ray binaries, the radiatively driven stellar wind from the primary may be inhibited by the X-ray irradiation. This creates the feedback that limits the X-ray luminosity of the compact secondary. Wind inhibition might be weakened by the effect of small-scale wind inhomogeneities (clumping) possibly affecting the limiting X-ray luminosity. Aims. We study the influence of X-ray irradiation on the stellar wind for different radial distributions of clumping. Methods. We calculate hot star wind models with external irradiation and clumping using our global wind code. The models are calculated for different parameters of the binary. We determine the parameters for which the X-ray wind ionization is so strong that it leads to a decrease of the radiative force. This causes a decrease of the wind velocity and even of the mass-loss rate in the case of extreme X-ray irradiation. Results. Clumping weakens the effect of X-ray irradiation because it favours recombination and leads to an increase of the wind mass-loss rate. The best match between the models and observed properties of high-mass X-ray binaries (HMXBs) is derived with radially variable clumping. We describe the influence of X-ray irradiation on the terminal velocity and on the mass-loss rate in a parametric way. The X-ray luminosities predicted within the Bondi-Hoyle-Lyttleton theory agree nicely with observations when accounting for X-ray irradiation. Conclusions. The ionizing feedback regulates the accretion onto the compact companion resulting in a relatively stable X-ray source. The wind-powered accretion model can account for large luminosities in HMXBs only when introducing the ionizing feedback. There are two possible states following from the dependence of X-ray luminosity on the wind terminal velocity and mass-loss rate. One state has low X-ray luminosity and a nearly undisturbed wind, and the second state has high X-ray luminosity and exhibits a strong influence of X-rays on the flow.


2018 ◽  
Vol 610 ◽  
pp. A60 ◽  
Author(s):  
A. A. C. Sander ◽  
F. Fürst ◽  
P. Kretschmar ◽  
L. M. Oskinova ◽  
H. Todt ◽  
...  

Context. Vela X-1, a prototypical high-mass X-ray binary (HMXB), hosts a neutron star (NS) in a close orbit around an early-B supergiant donor star. Accretion of the donor star's wind onto the NS powers its strong X-ray luminosity. To understand the physics of HMXBs, detailed knowledge about the donor star winds is required. Aims. To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods. We used the recently updated version of the Potsdam Wolf–Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results. The wind flow in Vela X-1 is driven by ions from various elements, with Fe iii and S iii leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at v∞≈ 600 km s−1. On the other hand, the wind velocity in the inner region where the NS is located is only ≈100 km s−1, which is not expected on the basis of a standard β-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions. Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.


Author(s):  
David H Cohen ◽  
Vanessa Vaughn Parts ◽  
Graham M Doskoch ◽  
Jiaming Wang ◽  
Véronique Petit ◽  
...  

Abstract We present a uniform analysis of six examples of embedded wind shock (EWS) O star X-ray sources observed at high resolution with the Chandra grating spectrometers. By modeling both the hot plasma emission and the continuum absorption of the soft X-rays by the cool, partially ionized bulk of the wind we derive the temperature distribution of the shock-heated plasma and the wind mass-loss rate of each star. We find a similar temperature distribution for each star’s hot wind plasma, consistent with a power-law differential emission measure, $\frac{d\log EM}{d\log T}$, with a slope a little steeper than -2, up to temperatures of only about 107 K. The wind mass-loss rates, which are derived from the broadband X-ray absorption signatures in the spectra, are consistent with those found from other diagnostics. The most notable conclusion of this study is that wind absorption is a very important effect, especially at longer wavelengths. More than 90 per cent of the X-rays between 18 and 25 Å produced by shocks in the wind of ζ Pup are absorbed, for example. It appears that the empirical trend of X-ray hardness with spectral subtype among O stars is primarily an absorption effect.


Sign in / Sign up

Export Citation Format

Share Document