scholarly journals Explicit Bayesian treatment of unknown foreground contaminations in galaxy surveys

2019 ◽  
Vol 624 ◽  
pp. A115 ◽  
Author(s):  
Natalia Porqueres ◽  
Doogesh Kodi Ramanah ◽  
Jens Jasche ◽  
Guilhem Lavaux

The treatment of unknown foreground contaminations will be one of the major challenges for galaxy clustering analyses of coming decadal surveys. These data contaminations introduce erroneous large-scale effects in recovered power spectra and inferred dark matter density fields. In this work, we present an effective solution to this problem in the form of a robust likelihood designed to account for effects due to unknown foreground and target contaminations. Conceptually, this robust likelihood marginalizes over the unknown large-scale contamination amplitudes. We showcase the effectiveness of this novel likelihood via an application to a mock SDSS-III data set subject to dust extinction contamination. In order to illustrate the performance of our proposed likelihood, we infer the underlying dark-matter density field and reconstruct the matter power spectrum, being maximally agnostic about the foregrounds. The results are compared to those of an analysis with a standard Poissonian likelihood, as typically used in modern large-scale structure analyses. While the standard Poissonian analysis yields excessive power for large-scale modes and introduces an overall bias in the power spectrum, our likelihood provides unbiased estimates of the matter power spectrum over the entire range of Fourier modes considered in this work. Further, we demonstrate that our approach accurately accounts for and corrects the effects of unknown foreground contaminations when inferring three-dimensional density fields. Robust likelihood approaches, as presented in this work, will be crucial to control unknown systematic error and maximize the outcome of the decadal surveys.

2019 ◽  
Vol 488 (2) ◽  
pp. 2573-2604 ◽  
Author(s):  
E G Patrick Bos ◽  
Francisco-Shu Kitaura ◽  
Rien van de Weygaert

Abstract We present a self-consistent Bayesian formalism to sample the primordial density fields compatible with a set of dark matter density tracers after a cosmic evolution observed in redshift space. Previous works on density reconstruction did not self-consistently consider redshift space distortions or included an additional iterative distortion correction step. We present here the analytic solution of coherent flows within a Hamiltonian Monte Carlo posterior sampling of the primordial density field. We test our method within the Zel’dovich approximation, presenting also an analytic solution including tidal fields and spherical collapse on small scales. Our resulting reconstructed fields are isotropic and their power spectra are unbiased compared to the true field defined by our mock observations. Novel algorithmic implementations are introduced regarding the mass assignment kernels when defining the dark matter density field and optimization of the time-step in the Hamiltonian equations of motions. Our algorithm, dubbed barcode, promises to be specially suited for analysis of the dark matter cosmic web down to scales of a few megaparsecs. This large-scale structure is implied by the observed spatial distribution of galaxy clusters – such as obtained from X-ray, Sunyaev–Zel’dovich, or weak lensing surveys – as well as that of the intergalactic medium sampled by the Ly α forest or perhaps even by deep hydrogen intensity mapping. In these cases, virialized motions are negligible, and the tracers cannot be modelled as point-like objects. It could be used in all of these contexts as a baryon acoustic oscillation reconstruction algorithm.


2021 ◽  
Vol 503 (4) ◽  
pp. 5638-5645
Author(s):  
Gábor Rácz ◽  
István Szapudi ◽  
István Csabai ◽  
László Dobos

ABSTRACT The classical gravitational force on a torus is anisotropic and always lower than Newton’s 1/r2 law. We demonstrate the effects of periodicity in dark matter only N-body simulations of spherical collapse and standard Lambda cold dark matter (ΛCDM) initial conditions. Periodic boundary conditions cause an overall negative and anisotropic bias in cosmological simulations of cosmic structure formation. The lower amplitude of power spectra of small periodic simulations is a consequence of the missing large-scale modes and the equally important smaller periodic forces. The effect is most significant when the largest mildly non-linear scales are comparable to the linear size of the simulation box, as often is the case for high-resolution hydrodynamical simulations. Spherical collapse morphs into a shape similar to an octahedron. The anisotropic growth distorts the large-scale ΛCDM dark matter structures. We introduce the direction-dependent power spectrum invariant under the octahedral group of the simulation volume and show that the results break spherical symmetry.


2021 ◽  
Vol 2021 (12) ◽  
pp. 003
Author(s):  
José Fonseca ◽  
Chris Clarkson

Abstract In this paper, we study how to directly measure the effect of peculiar velocities in the observed angular power spectra. We do this by constructing a new anti-symmetric estimator of Large Scale Structure using different dark matter tracers. We show that the Doppler term is the major component of our estimator and we show that we can measure it with a signal-to-noise ratio up to ∼ 50 using a futuristic SKAO HI galaxy survey. We demonstrate the utility of this estimator by using it to provide constraints on the Euler equation.


2014 ◽  
Vol 784 (1) ◽  
pp. 11 ◽  
Author(s):  
Sébastien Peirani ◽  
David H. Weinberg ◽  
Stéphane Colombi ◽  
Jérémy Blaizot ◽  
Yohan Dubois ◽  
...  

Author(s):  
Satya Seshavatharam U.V ◽  
S. Lakshminarayana

With reference to Planck scale, Mach’s relation, increasing support for large scale cosmic anisotropy and preferred directions and by introducing two new parameters Gamma and Beta, right from the beginning of Planck scale, we make an attempt to estimate ordinary matter density ratio, dark matter density ratio, mass, radius, temperature, age and expansion velocity (from and about the baby universe in all directions). We would like suggest that, from the beginning of Planck scale, 1) Dark matter can be considered as a kind of cosmic foam responsible for formation of galaxies. 2) Cosmic angular velocity is directly proportional to squared cosmic temperature. 3) Ratio of critical temperature to actual temperature plays a heuristic role in understanding ordinary and dark matter density ratios. 4) Cosmic expansion velocity increases with decreasing total matter density ratio. 5) There is no need to consider dark energy for understanding cosmic acceleration.


2021 ◽  
Vol 2021 (12) ◽  
pp. 044
Author(s):  
G. Parimbelli ◽  
G. Scelfo ◽  
S.K. Giri ◽  
A. Schneider ◽  
M. Archidiacono ◽  
...  

Abstract We investigate and quantify the impact of mixed (cold and warm) dark matter models on large-scale structure observables. In this scenario, dark matter comes in two phases, a cold one (CDM) and a warm one (WDM): the presence of the latter causes a suppression in the matter power spectrum which is allowed by current constraints and may be detected in present-day and upcoming surveys. We run a large set of N-body simulations in order to build an efficient and accurate emulator to predict the aforementioned suppression with percent precision over a wide range of values for the WDM mass, Mwdm, and its fraction with respect to the totality of dark matter, fwdm. The suppression in the matter power spectrum is found to be independent of changes in the cosmological parameters at the 2% level for k≲ 10 h/Mpc and z≤ 3.5. In the same ranges, by applying a baryonification procedure on both ΛCDM and CWDM simulations to account for the effect of feedback, we find a similar level of agreement between the two scenarios. We examine the impact that such suppression has on weak lensing and angular galaxy clustering power spectra. Finally, we discuss the impact of mixed dark matter on the shape of the halo mass function and which analytical prescription yields the best agreement with simulations. We provide the reader with an application to galaxy cluster number counts.


Author(s):  
A Balaguera-Antolínez ◽  
Francisco-Shu Kitaura ◽  
M Pellejero-Ibáñez ◽  
Martha Lippich ◽  
Cheng Zhao ◽  
...  

Abstract In this paper we demonstrate that the information encoded in one single (sufficiently large) N-body simulation can be used to reproduce arbitrary numbers of halo catalogues, using approximated realisations of dark matter density fields with different initial conditions. To this end we use as a reference one realisation (from an ensemble of 300) of the Minerva N-body simulations and the recently published Bias Assignment Method to extract the local and non-local bias linking the halo to the dark matter distribution. We use an approximate (and fast) gravity solver to generate 300 dark matter density fields from the down-sampled initial conditions of the reference simulation and sample each of these fields using the halo-bias and a kernel, both calibrated from the arbitrarily chosen realisation of the reference simulation. We show that the power spectrum, its variance and the three-point statistics are reproduced within $\sim 2\%$ (up to k ∼ 1.0 h Mpc−1), $\sim 5-10\%$ and $\sim 10\%$, respectively. Using a model for the real space power spectrum (with three free bias parameters), we show that the covariance matrices obtained from our procedure lead to parameter uncertainties that are compatible within $\sim 10\%$ with respect to those derived from the reference covariance matrix, and motivate approaches that can help to reduce these differences to $\sim 1\%$. Our method has the potential to learn from one simulation with moderate volumes and high-mass resolution and extrapolate the information of the bias and the kernel to larger volumes, making it ideal for the construction of mock catalogues for present and forthcoming observational campaigns such as Euclid or DESI.


2020 ◽  
Vol 494 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Tom Charnock ◽  
Guilhem Lavaux ◽  
Benjamin D Wandelt ◽  
Supranta Sarma Boruah ◽  
Jens Jasche ◽  
...  

ABSTRACT An ambitious goal in cosmology is to forward model the observed distribution of galaxies in the nearby Universe today from the initial conditions of large-scale structures. For practical reasons, the spatial resolution at which this can be done is necessarily limited. Consequently, one needs a mapping between the density of dark matter averaged over ∼Mpc scales and the distribution of dark matter haloes (used as a proxy for galaxies) in the same region. Here, we demonstrate a method for determining the halo mass distribution function by learning the tracer bias between density fields and halo catalogues using a neural bias model. The method is based on the Bayesian analysis of simple, physically motivated, neural network-like architectures, which we denote as neural physical engines, and neural density estimation. As a result, we are able to sample the initial phases of the dark matter density field while inferring the parameters describing the halo mass distribution function, providing a fully Bayesian interpretation of both the initial dark matter density distribution and the neural bias model. We successfully run an upgraded borg (Bayesian Origin Reconstruction from Galaxies) inference using our new likelihood and neural bias model with halo catalogues derived from full N-body simulations. In preliminary results, we notice there could potentially be orders of magnitude improvement in modelling compared to classical biasing techniques.


2020 ◽  
Vol 501 (1) ◽  
pp. 833-852
Author(s):  
Toshiki Kurita ◽  
Masahiro Takada ◽  
Takahiro Nishimichi ◽  
Ryuichi Takahashi ◽  
Ken Osato ◽  
...  

ABSTRACT We use a suite of N-body simulations to study intrinsic alignments (IA) of halo shapes with the surrounding large-scale structure in the ΛCDM model. For this purpose, we develop a novel method to measure multipole moments of the three-dimensional power spectrum of the E-mode field of halo shapes with the matter/halo distribution, $P_{\delta E}^{(\ell)}(k)$ (or $P^{(\ell)}_{{\rm h}E}$), and those of the auto-power spectrum of the E-mode, $P^{(\ell)}_{EE}(k)$, based on the E/B-mode decomposition. The IA power spectra have non-vanishing amplitudes over the linear to non-linear scales, and the large-scale amplitudes at k ≲ 0.1 h−1 Mpc are related to the matter power spectrum via a constant coefficient (AIA), similar to the linear bias parameter of galaxy or halo density field. We find that the cross- and auto-power spectra PδE and PEE at non-linear scales, k ≳ 0.1 h−1 Mpc, show different k-dependences relative to the matter power spectrum, suggesting a violation of the non-linear alignment model commonly used to model contaminations of cosmic shear signals. The IA power spectra exhibit baryon acoustic oscillations, and vary with halo samples of different masses, redshifts, and cosmological parameters (Ωm, S8). The cumulative signal-to-noise ratio for the IA power spectra is about 60 per cent of that for the halo density power spectrum, where the super-sample covariance is found to give a significant contribution to the total covariance. Thus our results demonstrate that the IA power spectra of galaxy shapes, measured from imaging and spectroscopic surveys for an overlapping area of the sky, can be used to probe the underlying matter power spectrum, the primordial curvature perturbations, and cosmological parameters, in addition to the standard galaxy density power spectrum.


2005 ◽  
Vol 14 (02) ◽  
pp. 223-256 ◽  
Author(s):  
PAOLO CIARCELLUTI

This is the second paper of a series devoted to the study of the cosmological implications of the existence of mirror dark matter. The parallel hidden mirror world has the same microphysics as the observable one and couples the latter only gravitationally. The primordial nucleosynthesis bounds demand that the mirror sector should have a smaller temperature T′ than the ordinary one T, and by this reason its evolution can be substantially deviated from the standard cosmology. In this paper we take scalar adiabatic perturbations as the input in a flat Universe, and compute the power spectra for ordinary and mirror CMB and LSS, changing the cosmological parameters, and always comparing with the CDM case. We find differences in both the CMB and LSS power spectra, and we demonstrate that the LSS spectrum is particularly sensitive to the mirror parameters, due to the presence of both the oscillatory features of mirror baryons and the collisional mirror Silk damping. For x<0.3 the mirror baryon–photon decoupling happens before the matter–radiation equality, so that CMB and LSS power spectra in linear regime are equivalent for mirror and CDM cases. For higher x-values the LSS spectra strongly depend on the amount of mirror baryons. Finally, qualitatively comparing with the present observational limits on the CMB and LSS spectra, we show that for x<0.3 the entire dark matter could be made of mirror baryons, while in the case x≳0.3 the pattern of the LSS power spectrum excludes the possibility of dark matter consisting entirely of mirror baryons, but they could present as admixture (up to ~50%) to the conventional CDM.


Sign in / Sign up

Export Citation Format

Share Document