scholarly journals Cosmic dance in the Shapley Concentration Core

2018 ◽  
Vol 620 ◽  
pp. A25
Author(s):  
G. Di Gennaro ◽  
T. Venturi ◽  
D. Dallacasa ◽  
S. Giacintucci ◽  
P. Merluzzi ◽  
...  

Context. The Shapley Concentration (⟨z⟩ ≈ 0.048) covers several degrees in the southern hemisphere, and includes galaxy clusters in advanced evolutionary stages, groups of clusters in the very early stages of merger, fairly massive clusters with ongoing accretion activity, and smaller groups located in filaments in the regions between the main clusters. Aims. With the goal to investigate the role of cluster mergers and accretion on the radio galaxy population, we performed a multi-wavelength study of the brightest cluster galaxies (BCGs) and of the galaxies showing extended radio emission in the cluster complexes of Abell 3528 and Abell 3558. In total, our study is based on a sample of 12 galaxies. Methods. We observed the clusters with the Giant Metrewave Radio Telescope (GMRT) at 235, 325, and 610 MHz, and with the Very Large Array (VLA) at 8.46 GHz. We complemented our study with the TIFR GMRT Sky Survey (TGSS) at 150 MHz, the Sydney University Molonglo Sky Survey (SUMSS) at 843 MHz, and the Australia Telescope Compact array (ATCA) at 1380, 1400, 2380, and 4790 MHz data. Finally, optical imaging with the VLT Survey Telescope (VST) is also available for the host galaxies as well as the mid-infrared coverage with the Wide-Field Infrared Survey Explorer (WISE). Results. We found significant differences in the properties of the radio emission of the BCGs in the two cluster complexes. The BCGs in the A 3528 complex and in A 3556, which are relaxed cool-core objects, are powerful active radio galaxies. They also present hints of restarted activity. On the contrary, the BCGs in A 3558 and A 3562, which are well-known merging systems, are very faint, or quiet, in the radio band. The optical and infrared properties of the galaxies, on the other hand, are fairly similar in the two complexes, showing all passive red galaxies. Conclusions. Our study shows remarkable differences in the radio properties of the BGCs, which we relate to the different dynamical state of the host cluster. On the contrary, the lack of changes between such different environments in the optical band suggests that the dynamical state of galaxy clusters does not affect the optical counterparts of the radio galaxies, at least over the lifetime of the radio emission.

2020 ◽  
Vol 497 (2) ◽  
pp. 2163-2174
Author(s):  
T Pasini ◽  
M Brüggen ◽  
F de Gasperin ◽  
L Bîrzan ◽  
E O’Sullivan ◽  
...  

ABSTRACT Our understanding of how active galactic nucleus feedback operates in galaxy clusters has improved in recent years owing to large efforts in multiwavelength observations and hydrodynamical simulations. However, it is much less clear how feedback operates in galaxy groups, which have shallower gravitational potentials. In this work, using very deep Very Large Array and new MeerKAT observations from the MIGHTEE survey, we compiled a sample of 247 X-ray selected galaxy groups detected in the COSMOS field. We have studied the relation between the X-ray emission of the intra-group medium and the 1.4 GHz radio emission of the central radio galaxy. For comparison, we have also built a control sample of 142 galaxy clusters using ROSAT and NVSS data. We find that clusters and groups follow the same correlation between X-ray and radio emission. Large radio galaxies hosted in the centres of groups and merging clusters increase the scatter of the distribution. Using statistical tests and Monte Carlo simulations, we show that the correlation is not dominated by biases or selection effects. We also find that galaxy groups are more likely than clusters to host large radio galaxies, perhaps owing to the lower ambient gas density or a more efficient accretion mode. In these groups, radiative cooling of the intra-cluster medium could be less suppressed by active galactic nucleus heating. We conclude that the feedback processes that operate in galaxy clusters are also effective in groups.


2019 ◽  
Vol 626 ◽  
pp. A8 ◽  
Author(s):  
V. Missaglia ◽  
F. Massaro ◽  
A. Capetti ◽  
M. Paolillo ◽  
R. P. Kraft ◽  
...  

We present a catalog of 47 wide-angle tailed radio galaxies (WATs), the WATCAT, mainly built including a radio morphological classification; WATs were selected by combining observations from the National Radio Astronomy Observatory/Very Large Array Sky Survey (NVSS), the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST), and the Sloan Digital Sky Survey (SDSS). We included in the catalog only radio sources showing two-sided jets with two clear “warmspots” (i.e., jet knots as bright as 20% of the nucleus) lying on the opposite side of the radio core, and having classical extended emission resembling a plume beyond them. The catalog is limited to redshifts z ≤ 0.15, and lists only sources with radio emission extended beyond 30 kpc from the host galaxy. We found that host galaxies of WATCAT sources are all luminous (−20.5 ≳ Mr ≳ −23.7), red early-type galaxies with black hole masses in the range 108 ≲ MBH ≲ 109 M⊙. The spectroscopic classification indicates that they are all low-excitation galaxies (LEGs). Comparing WAT multifrequency properties with those of FR I and FR II radio galaxies at the same redshifts, we conclude that WATs show multifrequency properties remarkably similar to FR I radio galaxies, having radio power of typical FR IIs.


2020 ◽  
Vol 500 (1) ◽  
pp. 211-214
Author(s):  
D A Green ◽  
N Madhusudhan

ABSTRACT We present radio observations made towards the exoplanets Qatar-1b and WASP-80b near 150 MHz with the Giant Meterwave Radio Telescope (GMRT). These targets are relatively nearby irradiated giant exoplanets, a hot Jupiter and a hot Saturn, with sizes comparable to Jupiter but different masses and lower densities. Both the targets are expected to host extended H/He envelopes like Jupiter, with comparable or larger magnetic moments. No radio emission was detected from these exoplanets, with 3σ limits of 5.9 and 5.2 mJy for Qatar-1b and WASP-80b, respectively, from these targeted observations. These are considerably deeper limits than those available for exoplanets from wide-field surveys at similar frequencies. We also present archival Very Large Array (VLA) observations of a previously reported radio source close to 61 Vir (which has three exoplanets). The VLA observations resolve the source, which we identify as an extragalactic radio source, i.e. a chance association with 61 Vir. Additionally, we cross-match a recent exoplanet catalogue with the TIFR GMRT Sky Survey ADR1 radio catalogue, but do not find any convincing associations.


2013 ◽  
Vol 9 (S304) ◽  
pp. 95-95
Author(s):  
Francesco Massaro ◽  
R. D'Abrusco ◽  
M. Giroletti ◽  
A. Paggi ◽  
N. Masetti ◽  
...  

AbstractAbout one third of the gamma-ray sources detected by Fermi have still no firmly established counterpart at lower energies. Here we propose a new approach to find candidate counterparts for the unidentified gamma-ray sources (UGSs) based on the 325 MHz radio survey performed with Westerbork Synthesis Radio Telescope (WSRT) in the northern hemisphere. First we investigate the low-frequency radio properties of blazars, the largest known population of gamma-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO VLA Sky survey (NVSS). We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in literature to look for infrared and optical counterparts of the gamma-ray blazar candidates selected with the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research we identify 23 new gamma-ray blazar candidates out of 32 UGSs investigated. I will also present the first analysis of very low frequency radio emission of blazars based on the recent Very Large Array Low-Frequency Sky Survey (VLSS) at 74 MHz. I show that blazars present radio flat spectra when evaluated at 74 MHz, about an order of magnitude in frequency lower than previous analyses. The implications of these findings in the contest of the blazars – radio galaxies connection will be discussed.


2019 ◽  
Vol 631 ◽  
pp. A132 ◽  
Author(s):  
S. J. Molyneux ◽  
C. M. Harrison ◽  
M. E. Jarvis

Using a sample of 2922 z <  0.2, spectroscopically identified active galactic nuclei (AGN), we explore the relationship between radio size and the prevalence of extreme ionised outflows, as traced using broad [O III] emission-line profiles in spectra obtained by the Sloan Digital Sky Survey (SDSS). To classify radio sources as compact or extended, we combined a machine-learning technique for morphological classification with size measurements from two-dimensional Gaussian models to data from all-sky radio surveys. We find that the two populations have statistically different [O III] emission-line profiles; the compact sources tend to have the most extreme gas kinematics. When the radio emission is confined within 3″ (i.e. within the spectroscopic fibre or ≲5 kpc at the median redshift), the chance of observing broad [O III] emission-line components, which are indicative of very high velocity outflows and have a full width at half-maximum > 1000 km s−1, is twice as high. This difference is greatest for the highest radio luminosity bin of log[L1.4 GHz/W Hz−1] = 23.5−24.5 where the AGN dominate the radio emission; specifically, > 1000 km s−1 components are almost four times as likely to occur when the radio emission is compact in this subsample. Our follow-up ≈0.3″–1″ resolution radio observations for a subset of targets in this luminosity range reveal that radio jets and lobes are prevalent, and suggest that compact jets might be responsible for the stronger outflows in the wider sample. Our results are limited by the available relatively shallow all-sky radio surveys, but forthcoming surveys will provide a more complete picture of the connection between radio emission and outflows. Overall, our results add to the growing body of evidence that ionised outflows and compact radio emission in highly accreting “radiative” AGN are closely connected, possibly as a result of young or weak radio jets.


2020 ◽  
Vol 636 ◽  
pp. A12
Author(s):  
E. Retana-Montenegro ◽  
H. J. A. Röttgering

We present an estimate of the optical luminosity function (OLF) of LOFAR radio-selected quasars (RSQs) at 1.4 <  z <  5.0 in the 9.3 deg2 NOAO Deep Wide-field survey (NDWFS) of the Boötes field. The selection was based on optical and mid-infrared photometry used to train three different machine learning (ML) algorithms (Random forest, SVM, Bootstrap aggregation). Objects taken as quasars by the ML algorithms are required to be detected at ≥5σ significance in deep radio maps to be classified as candidate quasars. The optical imaging came from the Sloan Digital Sky Survey and the Pan-STARRS1 3π survey; mid-infrared photometry was taken from the Spitzer Deep, Wide-Field Survey; and radio data was obtained from deep LOFAR imaging of the NDWFS-Boötes field. The requirement of a 5σ LOFAR detection allowed us to reduce the stellar contamination in our sample by two orders of magnitude. The sample comprises 130 objects, including both photometrically selected candidate quasars (47) and spectroscopically confirmed quasars (83). The spectral energy distributions calculated using deep photometry available for the NDWFS-Boötes field confirm the validity of the photometrically selected quasars using the ML algorithms as robust candidate quasars. The depth of our LOFAR observations allowed us to detect the radio-emission of quasars that would be otherwise classified as radio-quiet. Around 65% of the quasars in the sample are fainter than M1450 = −24.0, a regime where the OLF of quasars selected through their radio emission, has not been investigated in detail. It has been demonstrated that in cases where mid-infrared wedge-based AGN selection is not possible due to a lack of appropriate data, the selection of quasars using ML algorithms trained with optical and infrared photometry in combination with LOFAR data provides an excellent approach for obtaining samples of quasars. The OLF of RSQs can be described by pure luminosity evolution at z <  2.4, and a combined luminosity and density evolution at z >  2.4. The faint-end slope, α, becomes steeper with increasing redshift. This trend is consistent with previous studies of faint quasars (M1450 ≤ −22.0). We demonstrate that RSQs show an evolution that is very similar to that exhibited by faint quasars. By comparing the spatial density of RSQs with that of the total (radio-detected plus radio-undetected) faint quasar population at similar redshifts, we find that RSQs may compose up to ∼20% of the whole faint quasar population. This fraction, within uncertainties, is constant with redshift. Finally, we discuss how the compactness of the RSQs radio-morphologies and their steep spectral indices could provide valuable insights into how quasar and radio activity are triggered in these systems.


Author(s):  
Ting-Wen Lan ◽  
J Xavier Prochaska

Abstract We test the hypothesis that environments play a key role in enabling the growth of enormous radio structures spanning more than 700 kpc, an extreme population of radio galaxies called giant radio galaxies (GRGs). To achieve this, we explore (1) the relationships between the occurrence of GRGs and the surface number density of surrounding galaxies, including satellite galaxies and galaxies from neighboring halos, as well as (2) the GRG locations towards large-scale structures. The analysis is done by making use of a homogeneous sample of 110 GRGs detected from the LOFAR Two-metre Sky Survey in combination with photometric galaxies from the DESI Legacy Imaging Surveys and a large-scale filament catalog from the Sloan Digital Sky Survey. Our results show that the properties of galaxies around GRGs are similar with that around the two control samples, consisting of galaxies with optical colors and luminosity matched to the properties of the GRG host galaxies. Additionally, the properties of surrounding galaxies depend on neither their relative positions to the radio jet/lobe structures nor the sizes of GRGs. We also find that the locations of GRGs and the control samples with respect to the nearby large-scale structures are consistent with each other. These results demonstrate that there is no correlation between the GRG properties and their environments traced by stars, indicating that external galaxy environments are not the primary cause of the large sizes of the radio structures. Finally, regarding radio feedback, we show that the fraction of blue satellites does not correlate with the GRG properties, suggesting that the current epoch of radio jets have minimal influence on the nature of their surrounding galaxies.


2020 ◽  
Vol 494 (4) ◽  
pp. 4802-4818 ◽  
Author(s):  
V A Fawcett ◽  
D M Alexander ◽  
D J Rosario ◽  
L Klindt ◽  
S Fotopoulou ◽  
...  

ABSTRACT We have recently used the Faint Images of the Radio Sky at Twenty-centimeters (FIRST) survey to show that red quasars have fundamentally different radio properties to typical blue quasars: a significant (factor ≈3) enhancement in the radio-detection fraction, which arises from systems around the radio-quiet threshold with compact (&lt;5 arcsec) radio morphologies. To gain greater insight into these physical differences, here we use the DR14 Sloan Digital Sky Survey (SDSS) and more sensitive, higher resolution radio data from the Very Large Array (VLA) Stripe 82 (S82) and VLA-COSMOS 3 GHz (C3GHz) surveys. With the S82 data, we perform morphological analyses at a resolution and depth three times that of the FIRST radio survey, and confirm an enhancement in radio-faint and compact red quasars over typical quasars; we now also find tentative evidence for an enhancement in red quasars with slightly extended radio structures (16–43 kpc at z = 1.5). These analyses are complemented by C3GHz, which is deep enough to detect radio emission from star-formation processes. From our data we find that the radio enhancement from red quasars is due to AGN activity on compact scales (≲43 kpc) for radio-intermediate–radio-quiet sources (−5 &lt; $\mathcal {R}$ &lt; −3.4, where $\mathcal {R}$ = $L_{\rm{1.4\,GHz}}/L_{6\mu\text{m}}$), which decreases at $\mathcal {R}$ &lt; −5 as the radio emission from star-formation starts to dilute the AGN component. Overall our results argue against a simple orientation scenario and are consistent with red quasars representing a younger, earlier phase in the overall evolution of quasars.


2018 ◽  
Vol 621 ◽  
pp. A19
Author(s):  
R. Ricci ◽  
I. Prandoni ◽  
H. R. De Ruiter ◽  
P. Parma

Aims. It is now established that the faint radio population is a mixture of star-forming galaxies and faint active galactic nuclei (AGNs), with the former dominating below S1.4 GHz ∼ 100μJy and the latter at larger flux densities. The faint radio AGN component can itself be separated into two main classes, mainly based on the host-galaxy properties: sources associated with red/early-type galaxies (like radio galaxies) are the dominant class down to ∼100 μJy; quasar/Seyfert–like sources contribute an additional 10–20%. One of the major open questions regarding faint radio AGNs is the physical process responsible for their radio emission. This work aims at investigating this issue, with particular respect to the AGN component associated with red/early-type galaxies. Such AGNs show, on average, flatter radio spectra than radio galaxies and are mostly compact (≤30 kpc in size). Various scenarios have been proposed to explain their radio emission. For instance they could be core/core-jet dominated radio galaxies, low-power BL Lacertae, or advection-dominated accretion flow (ADAF) systems. Methods. We used the Australia Telescope Compact Array (ATCA) to extend a previous follow-up multi-frequency campaign to 38 and 94 GHz. This campaign focuses on a sample of 28 faint radio sources associated with early-type galaxies extracted from the ATESP 5 GHz survey. Such data, together with those already at hand, are used to perform radio spectral and variability analyses. Both analyses can help us to disentangle between core- and jet-dominated sources, as well as to verify the presence of ADAF/ADAF+jet systems. Additional high-resolution observations at 38 GHz were carried out to characterise the radio morphology of these sources on kiloparsec scales. Results. Most of the sources (25/28) were detected at 38 GHz, while only one (ATESP5J224547−400324) of the twelve sources observed at 94 GHz was detected. From the analysis of the radio spectra we confirmed our previous findings that pure ADAF models can be ruled out. Only eight out of the 28 sources were detected in the 38-GHz high-resolution (0.6 arcsec) radio images and of those eight only one showed a tentative core-jet structure. Putting together spectral, variability, luminosity, and linear size information we conclude that different kinds of sources compose our AGN sample: (a) luminous and large (≥100 kpc) classical radio galaxies (∼18% of the sample); (b) compact (confined within their host galaxies), low-luminosity, power-law (jet-dominated) sources (∼46% of the sample); and (c) compact, flat (or peaked) spectrum, presumably core-dominated, radio sources (∼36% of the sample). Variability is indeed preferentially associated with the latter.


2019 ◽  
Vol 15 (S356) ◽  
pp. 361-363
Author(s):  
Natalia Żywucka ◽  
Dorota Koziel-Wierzbowska ◽  
Arti Goyal

AbstractWe present the catalogue of Radio sources associated with Optical Galaxies and having Unresolved or Extended morphologies I (ROGUE I). It was generated by cross-matching galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) as well as radio sources from the First Images of Radio Sky at Twenty Centimetre (FIRST) and the National Radio Astronomical Observatory VLA Sky Survey (NVSS) catalogues. We created the largest handmade catalogue of visually classified radio objects and associated with them optical host galaxies, containing 32,616 galaxies with a FIRST core within 3 arcsec of the optical position. All listed objects possess the good quality SDSS DR 7 spectra with the signal-to-noise ratio > 10 and spectroscopic redshifts up to z = 0.6. The radio morphology classification was performed by a visual examination of the FIRST and the NVSS contour maps overlaid on a DSS image, while an optical morphology classification was based on the 120 arcsec snapshot images from SDSS DR 7.The majority of radio galaxies in ROGUE I, i.e. ∼ 93%, are unresolved (compact or elongated), while the rest of them exhibit extended morphologies, such as Fanaroff-Riley (FR) type I, II, and hybrid, wide-angle tail, narrow-angle tail, head-tail sources, and sources with intermittent or reoriented jet activity, i.e. double–double, X–shaped, and Z–shaped. Most of FR IIs have low radio luminosities, comparable to the luminosities of FR Is. Moreover, due to visual check of all radio maps and optical images, we were able to discover or reclassify a number of radio objects as giant, double–double, X–shaped, and Z–shaped radio galaxies. The presented sample can serve as a database for training automatic methods of identification and classification of optical and radio galaxies.


Sign in / Sign up

Export Citation Format

Share Document