scholarly journals Detecting the general relativistic orbital precession of the exoplanet HD 80606b

2019 ◽  
Vol 628 ◽  
pp. A80 ◽  
Author(s):  
Luc Blanchet ◽  
Guillaume Hébrard ◽  
François Larrouturou

We investigate the relativistic effects in the orbital motion of the exoplanet HD 80606b with a high eccentricity of e ≃ 0.93. We propose a method to detect these effects (notably the orbital precession) based on measuring the successive eclipse and transit times of the exoplanet. In the case of HD 80606b, we find that in ten years (after approximately 33 periods) the instants of transits and eclipses are delayed with respect to the Newtonian prediction by about three minutes due to relativistic effects. These effects can be detected by comparing at different epochs the time difference between a transit and the preceding eclipse, and should be measurable by comparing events already observed on HD 80606 in 2010 with the Spitzer satellite together with those to be observed in the future with the James Webb Space Telescope.

2006 ◽  
Vol 15 (12) ◽  
pp. 2133-2140 ◽  
Author(s):  
FRED C. ADAMS ◽  
GREGORY LAUGHLIN

This paper considers general relativistic (GR) effects in currently observed extrasolar planetary systems. Although GR corrections are small, they can compete with secular interactions in these systems and thereby play an important role. Specifically, some of the observed multiple planet systems are close to secular resonance, where the dynamics is extremely sensitive to GR corrections, and these systems can be used as laboratories to test general relativity. For the three-planet solar system Upsilon Andromedae, secular interaction theory implies an 80% probability of finding the system with its observed orbital elements if GR is correct, compared with only a 2% probability in the absence of GR. In the future, tighter constraints can be obtained with increased temporal coverage.


Author(s):  
David M. Wittman

General relativity explains much more than the spacetime around static spherical masses.We briefly assess general relativity in the larger context of physical theories, then explore various general relativistic effects that have no Newtonian analog. First, source massmotion gives rise to gravitomagnetic effects on test particles.These effects also depend on the velocity of the test particle, which has substantial implications for orbits around black holes to be further explored in Chapter 20. Second, any changes in the sourcemass ripple outward as gravitational waves, and we tell the century‐long story from the prediction of gravitational waves to their first direct detection in 2015. Third, the deflection of light by galaxies and clusters of galaxies allows us to map the amount and distribution of mass in the universe in astonishing detail. Finally, general relativity enables modeling the universe as a whole, and we explore the resulting Big Bang cosmology.


2018 ◽  
Vol 615 ◽  
pp. A153 ◽  
Author(s):  
Rodolfo G. Cionco ◽  
Dmitry A. Pavlov

Aims. The barycentric dynamics of the Sun has increasingly been attracting the attention of researchers from several fields, due to the idea that interactions between the Sun’s orbital motion and solar internal functioning could be possible. Existing high-precision ephemerides that have been used for that purpose do not include the effects of trans-Neptunian bodies, which cause a significant offset in the definition of the solar system’s barycentre. In addition, the majority of the dynamical parameters of the solar barycentric orbit are not routinely calculated according to these ephemerides or are not publicly available. Methods. We developed a special version of the IAA RAS lunar–solar–planetary ephemerides, EPM2017H, to cover the whole Holocene and 1 kyr into the future. We studied the basic and derived (e.g., orbital torque) barycentric dynamical quantities of the Sun for that time span. A harmonic analysis (which involves an application of VSOP2013 and TOP2013 planetary theories) was performed on these parameters to obtain a physics-based interpretation of the main periodicities present in the solar barycentric movement. Results. We present a high-precision solar barycentric orbit and derived dynamical parameters (using the solar system’s invariable plane as the reference plane), widely accessible for the whole Holocene and 1 kyr in the future. Several particularities and barycentric phenomena are presented and explained on dynamical bases. A comparison with the Jet Propulsion Laboratory DE431 ephemeris, whose main differences arise from the modelling of trans-Neptunian bodies, shows significant discrepancies in several parameters (i.e., not only limited to angular elements) related to the solar barycentric dynamics. In addition, we identify the main periodicities of the Sun’s barycentric movement and the main giant planets perturbations related to them.


2021 ◽  
Vol 503 (3) ◽  
pp. 4563-4575
Author(s):  
A Jiménez-Rosales ◽  
J Dexter ◽  
S M Ressler ◽  
A Tchekhovskoy ◽  
M Bauböck ◽  
...  

ABSTRACT Using general relativistic magnetohydrodynamic simulations of accreting black holes, we show that a suitable subtraction of the linear polarization per pixel from total intensity images can enhance the photon ring feature. We find that the photon ring is typically a factor of ≃2 less polarized than the rest of the image. This is due to a combination of plasma and general relativistic effects, as well as magnetic turbulence. When there are no other persistently depolarized image features, adding the subtracted residuals over time results in a sharp image of the photon ring. We show that the method works well for sample, viable GRMHD models of Sgr A* and M87*, where measurements of the photon ring properties would provide new measurements of black hole mass and spin, and potentially allow for tests of the ‘no-hair’ theorem of general relativity.


1990 ◽  
Vol 123 ◽  
pp. 347-354
Author(s):  
G. A. Keyworth

None of us thought, when this colloquium was scheduled, that the timing would enable it to become a celebration as well. The launch, after years of postponements, of the Hubble Space Telescope, has cast a galactic glow over the proceedings here this week. But at the same time, the frustrating delays caused by the collapse in 1986 and very slow regeneration of the U.S. space launch capabilities since then make this discussion of near-earth access very pointed.As we know, the sheer momentum of the U.S. Space Shuttle Program has dominated our perceptions of space launch for a decade and a half. It reached its peak in the early 1980s when our national policy placed nearly total reliance on the Shuttle as our means of access to space. It was a policy doomed to fail, for obvious and not-so-obvious reasons.


2011 ◽  
Vol 417 (1) ◽  
pp. 178-183 ◽  
Author(s):  
G. Risaliti ◽  
E. Nardini ◽  
M. Elvis ◽  
L. Brenneman ◽  
M. Salvati

Sign in / Sign up

Export Citation Format

Share Document