scholarly journals Large-scale environment of FR 0 radio galaxies

2020 ◽  
Vol 633 ◽  
pp. A161 ◽  
Author(s):  
A. Capetti ◽  
F. Massaro ◽  
R. D. Baldi

We explore the properties of the large-scale environment of the sources in the Faranoff-Riley class 0 catalog (FR0CAT). This sample includes 104 compact radio sources that are associated with nearby (z <  0.05) early-type galaxies. Using various estimators, we find that FR 0s are located in regions with higher than the average number of galaxies. The average galaxies density around FR 0s is a factor two lower with respect to FR I radio galaxies. This latter difference is driven by the large fraction (63%) of FR 0s that are located in groups formed by fewer than 15 galaxies. FR Is rarely (17%) inhabit an environment like this. In addition to the lack of substantial extended radio emission that defines the FR 0 class, this is the first significant difference between the properties of these two populations of low-power radio galaxies. We interpret the differences in environment between FR 0s and FR Is as due to an evolutionary link between local galaxies density, black hole spin, jet power, and extended radio emission.

2021 ◽  
Author(s):  
◽  
Siamak Dehghan

<p>This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg² area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS).  Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies.  It is believed that tailed radio galaxies reside in the dense environments of clusters and groups, and therefore, may be the signatures of overdensities in large-scale structure. To evaluate the idea of using tailed radio galaxies as tracers of dense environments, a systematic study of these sources as a function of density is required. For this reason and by using the 1.4 GHz Australia Telescope Large Area Survey (ATLAS) data, we examined over four deg² area of the ATLAS-CDFS field, which includes the entire CDFS. We present a catalogue of 56 non-linear, extended, and low surface brightness sources including 45 tailed radio galaxies, two relic candidates, and a possible radio halo. We report the detection of the most distant tailed radio galaxy to date, at a redshift of 2.1688. In addition, despite the lack of deep spectroscopic data in the ATLAS field, we find two of the detected tailed radio galaxies are associated with clusters. We find three Head-Tail galaxy candidates in the CDFS field, all of which are located at high redshifts, where the magnitude constraint of our redshift sample prevents any structure detection.  One of the primary objectives of this research is to investigate the association between the morphology of tailed radio galaxies and the physical characteristics of the surrounding environment. In order to understand the role of the variety of factors that influence the radio morphology, we constructed a simple model that generates the overall radio structure of the sources in different habitats. We report the results of the simulation of the wide-angle tail radio galaxy PKS J0334-3900, which shows that both the gravitation interactions and a cluster wind are required to generate the observed radio tails. As a result, we find the morphology of the tailed radio galaxies as an invaluable tool to probe environmental characteristics.  In a supplementary study, we investigate the role of cluster dynamics on generation and alternation of extended radio sources. We present a comprehensive structure and sub-structure analysis of the Abell 3266 galaxy cluster. Based on the results of the sub-structure test, position and orientation of a radio relic candidate, and morphology of a prominent tailed radio galaxy in the cluster, we propose an ongoing merger scenario for this chaotic cluster environment. Furthermore, we verify our theory by an N-body simulation of a pre-merger cluster and an in-falling group. The results of the simulation supports our merger scenario by explaining both the orientation of the radio relic and the observed morphology of the tailed radio galaxy.  While there is a weak correlation between the luminosity of radio-loud AGNs and environmental density, tailed radio galaxies make superior probes of over-dense regions. Thus, overall we find tailed radio galaxies can be used to trace overdensities out to z ~ 2 and probe the details of the environments in which they are found.</p>


2018 ◽  
Vol 621 ◽  
pp. A19
Author(s):  
R. Ricci ◽  
I. Prandoni ◽  
H. R. De Ruiter ◽  
P. Parma

Aims. It is now established that the faint radio population is a mixture of star-forming galaxies and faint active galactic nuclei (AGNs), with the former dominating below S1.4 GHz ∼ 100μJy and the latter at larger flux densities. The faint radio AGN component can itself be separated into two main classes, mainly based on the host-galaxy properties: sources associated with red/early-type galaxies (like radio galaxies) are the dominant class down to ∼100 μJy; quasar/Seyfert–like sources contribute an additional 10–20%. One of the major open questions regarding faint radio AGNs is the physical process responsible for their radio emission. This work aims at investigating this issue, with particular respect to the AGN component associated with red/early-type galaxies. Such AGNs show, on average, flatter radio spectra than radio galaxies and are mostly compact (≤30 kpc in size). Various scenarios have been proposed to explain their radio emission. For instance they could be core/core-jet dominated radio galaxies, low-power BL Lacertae, or advection-dominated accretion flow (ADAF) systems. Methods. We used the Australia Telescope Compact Array (ATCA) to extend a previous follow-up multi-frequency campaign to 38 and 94 GHz. This campaign focuses on a sample of 28 faint radio sources associated with early-type galaxies extracted from the ATESP 5 GHz survey. Such data, together with those already at hand, are used to perform radio spectral and variability analyses. Both analyses can help us to disentangle between core- and jet-dominated sources, as well as to verify the presence of ADAF/ADAF+jet systems. Additional high-resolution observations at 38 GHz were carried out to characterise the radio morphology of these sources on kiloparsec scales. Results. Most of the sources (25/28) were detected at 38 GHz, while only one (ATESP5J224547−400324) of the twelve sources observed at 94 GHz was detected. From the analysis of the radio spectra we confirmed our previous findings that pure ADAF models can be ruled out. Only eight out of the 28 sources were detected in the 38-GHz high-resolution (0.6 arcsec) radio images and of those eight only one showed a tentative core-jet structure. Putting together spectral, variability, luminosity, and linear size information we conclude that different kinds of sources compose our AGN sample: (a) luminous and large (≥100 kpc) classical radio galaxies (∼18% of the sample); (b) compact (confined within their host galaxies), low-luminosity, power-law (jet-dominated) sources (∼46% of the sample); and (c) compact, flat (or peaked) spectrum, presumably core-dominated, radio sources (∼36% of the sample). Variability is indeed preferentially associated with the latter.


2021 ◽  
Author(s):  
◽  
Siamak Dehghan

<p>This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg² area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS).  Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies.  It is believed that tailed radio galaxies reside in the dense environments of clusters and groups, and therefore, may be the signatures of overdensities in large-scale structure. To evaluate the idea of using tailed radio galaxies as tracers of dense environments, a systematic study of these sources as a function of density is required. For this reason and by using the 1.4 GHz Australia Telescope Large Area Survey (ATLAS) data, we examined over four deg² area of the ATLAS-CDFS field, which includes the entire CDFS. We present a catalogue of 56 non-linear, extended, and low surface brightness sources including 45 tailed radio galaxies, two relic candidates, and a possible radio halo. We report the detection of the most distant tailed radio galaxy to date, at a redshift of 2.1688. In addition, despite the lack of deep spectroscopic data in the ATLAS field, we find two of the detected tailed radio galaxies are associated with clusters. We find three Head-Tail galaxy candidates in the CDFS field, all of which are located at high redshifts, where the magnitude constraint of our redshift sample prevents any structure detection.  One of the primary objectives of this research is to investigate the association between the morphology of tailed radio galaxies and the physical characteristics of the surrounding environment. In order to understand the role of the variety of factors that influence the radio morphology, we constructed a simple model that generates the overall radio structure of the sources in different habitats. We report the results of the simulation of the wide-angle tail radio galaxy PKS J0334-3900, which shows that both the gravitation interactions and a cluster wind are required to generate the observed radio tails. As a result, we find the morphology of the tailed radio galaxies as an invaluable tool to probe environmental characteristics.  In a supplementary study, we investigate the role of cluster dynamics on generation and alternation of extended radio sources. We present a comprehensive structure and sub-structure analysis of the Abell 3266 galaxy cluster. Based on the results of the sub-structure test, position and orientation of a radio relic candidate, and morphology of a prominent tailed radio galaxy in the cluster, we propose an ongoing merger scenario for this chaotic cluster environment. Furthermore, we verify our theory by an N-body simulation of a pre-merger cluster and an in-falling group. The results of the simulation supports our merger scenario by explaining both the orientation of the radio relic and the observed morphology of the tailed radio galaxy.  While there is a weak correlation between the luminosity of radio-loud AGNs and environmental density, tailed radio galaxies make superior probes of over-dense regions. Thus, overall we find tailed radio galaxies can be used to trace overdensities out to z ~ 2 and probe the details of the environments in which they are found.</p>


2021 ◽  
Vol 922 (2) ◽  
pp. 197
Author(s):  
Anna Wójtowicz ◽  
Łukasz Stawarz ◽  
Jerzy Machalski ◽  
Luisa Ostorero

Abstract The dynamical evolution and radiative properties of luminous radio galaxies and quasars of the FR II type, are well understood. As a result, through the use of detailed modeling of the observed radio emission of such sources, one can estimate various physical parameters of the systems, including the density of the ambient medium into which the radio structure evolves. This, however, requires rather comprehensive observational information, i.e., sampling the broadband radio continua of the targets at several frequencies, and imaging their radio structures with high resolution. Such observations are, on the other hand, not always available, especially for high-redshift objects. Here, we analyze the best-fit values of the source physical parameters, derived from extensive modeling of the largest currently available sample of FR II radio sources, for which good-quality multiwavelength radio flux measurements could be collected. In the analyzed data set, we notice a significant and nonobvious correlation between the spectral index of the nonthermal radio emission continuum, and density of the ambient medium. We derive the corresponding correlation parameters, and quantify the intrinsic scatter by means of Bayesian analysis. We propose that the discovered correlation could be used as a cosmological tool to estimate the density of ambient medium for large samples of distant radio galaxies. Our method does not require any detailed modeling of individual sources, and relies on limited observational information, namely, the slope of the radio continuum between the rest-frame frequencies 0.4 and 5 GHz, possibly combined with the total linear size of the radio structure.


Author(s):  
R. R. Andreasyan ◽  
H. V. Abrahamyan

It is brought the physical and morphological data of 267 nearby radio galaxies identified with elliptical galaxies brighter than 18th magnitude (sample 1) and for 280 extragalactic radio sources with known position angles between the integrated intrinsic radio polarization and radio axes (sample 2).


1978 ◽  
Vol 79 ◽  
pp. 157-159
Author(s):  
R. Wielebinski

The existence of ‘haloes’ in clusters of galaxies was deduced by Ryle and Windram (1968) for the Perseus cluster and by Willson (1970) for the Coma cluster at 408 MHz by comparing total flux measured by a single dish with the sum of fluxes of radio sources found in the field. A direct measurement of the extended source Coma C was made by Jaffe et al. (1976) at 610 MHz. the failure to detect the halo of Coma at higher frequencies is attributed by all authors to a steep spectrum of this extended component.


1984 ◽  
Vol 110 ◽  
pp. 39-40
Author(s):  
P. D. Barthel ◽  
G. K. Miley ◽  
R. T. Schilizzi ◽  
E. Preuss ◽  
T. J. Cornwell

The Nuclear Radio cores of several nearby extended radio galaxies (e.g. M87, 3C236) consist not only of optically thick (< 1 pc) components, but also of emission on somewhat larger scale. As extended radio sources associated with quasars have on average stronger and more luminous radio cores (see e.g. Miley, 1980, Ann. Rev. Astron. Astrophys. 18, 165), we have started a project to study the properties of these quasar cores.


1982 ◽  
Vol 97 ◽  
pp. 453-459
Author(s):  
A. C. Fabian ◽  
A. K. Kembhavi

The density of intergalactic gas may be an important parameter in the formation of extended radio sources. It may range from ∼ 0.1 particle cm−3 in the centres of some rich clusters of galaxies down to 10−8cm−3 or less in intercluster space. The possible influence of the intracluster gas surrounding NGC 1275 on its radio emission is discussed, and the possibility that a significant fraction of the X-ray background is due to a hot intergalactic medium is explored in some detail.


1998 ◽  
Vol 179 ◽  
pp. 356-357
Author(s):  
E.A. Richards

To study galaxy populations and their evolution at the highest possible redshifts, a small area of the sky, the Hubble Deep Field (HDF) was imaged to an unprecedented sensitivity of R = 29.5 (Williams et al. 1996). As a complement to the HST observations, we have used the VLA at 8 GHz to image an area 5.′4 in diameter (FWHM) centered on the HDF to an rms sensitivity of 2 μJy. With a radio resolution of about 3″, we have 33 sources above 9.5 μJy, seven in the 4 arcmin2 HDF field of which six have clear optical IDs. There are an additional 12 IDs in the HST flanking fields. The optical counterparts of the radio sources are a mixture of ellipticals, spirals, and irregulars, consistent with earlier surveys of comparable depth (Windhorst et al. 1995). With a median redshift <z> ∼ 1, the radio galaxies we are sampling are somewhat more distant than the classical starbursting galaxies which dominate less sensitive radio surveys. Our HDF identifications are predominately with post-starburst galaxies, moderate power AGN, and blue irregulars (Fomalont et al. 1996).


2020 ◽  
Vol 494 (2) ◽  
pp. 2053-2067
Author(s):  
J C S Pierce ◽  
C N Tadhunter ◽  
R Morganti

ABSTRACT In the past decade, high-sensitivity radio surveys have revealed that the local radio active galactic nucleus population is dominated by moderate-to-low power sources with emission that is compact on galaxy scales. High-excitation radio galaxies (HERGs) with intermediate radio powers (22.5 &lt; log (L1.4 GHz) &lt; 25.0 W Hz−1) form an important sub-group of this population, since there is strong evidence that they also drive multiphase outflows on the scales of galaxy bulges. Here, we present high-resolution Very Large Array observations at 1.5, 4.5, and 7.5 GHz of a sample of 16 such HERGs in the local universe (z &lt; 0.1), conducted in order to investigate the morphology, extent, and spectra of their radio emission in detail, down to sub-kpc scales. We find that the majority (56 per cent) have unresolved structures at the limiting angular resolution of the observations (∼0.3 arcsec). Although similar in the compactness of their radio structures, these sources have steep radio spectra and host galaxy properties that distinguish them from local low-excitation radio galaxies that are unresolved on similar scales. The remaining sources exhibit extended radio structures with projected diameters ∼1.4–19.0 kpc and a variety of morphologies: three double-lobed; two large-scale diffuse; one jetted and ‘S-shaped’; one undetermined. Only 19 per cent of the sample therefore exhibit the double-lobed/edge-brightened structures often associated with their counterparts at high and low radio powers: radio-powerful HERGs and Seyfert galaxies, respectively. Additional high-resolution observations are required to investigate this further, and to probe the ≲300 pc scales on which some Seyfert galaxies show extended structures.


Sign in / Sign up

Export Citation Format

Share Document