scholarly journals ALMA observations of PKS 1549–79: a case of feeding and feedback in a young radio quasar

2019 ◽  
Vol 632 ◽  
pp. A66 ◽  
Author(s):  
Tom Oosterloo ◽  
Raffaella Morganti ◽  
Clive Tadhunter ◽  
J. B. Raymond Oonk ◽  
Hayley E. Bignall ◽  
...  

We present CO(1−0) and CO(3−2) Atacama Large Millimeter/submillimeter Array observations of the molecular gas in PKS 1549−79, as well as mm and very long baseline interferometry 2.3-GHz continuum observations of its radio jet. PKS 1549−79 is one of the closest young, radio-loud quasars caught in an on-going merger in which the active galactic nucleus (AGN) is in the first phases of its evolution. We detect three structures tracing the accretion and the outflow of molecular gas: kpc-scale tails of gas accreting onto PKS 1549−79 from a merger, a circumnuclear disc in the inner few hundred parsec, and a very broad (> 2300 km s−1) component detected in CO(1−0) at the position of the AGN. Thus, in PKS 1549−79 we see the co-existence of accretion and the ejection of gas. The line ratio CO(3−2)/CO(1−0) suggests that the gas in the circumnuclear-disc has both high densities and high kinetic temperatures. We estimate a mass outflow rate of at least 650 M⊙ yr−1. This massive outflow is confined to the inner region (r <  120 pc) of the galaxy, which suggests that the AGN drives the outflow. Considering the amount of molecular gas available in the central nuclear disc and the observed outflow rate, we estimate a time scale of ∼105 yr over which the AGN would be able to destroy the circumnuclear disc, although gas from the merger may come in from larger radii, rebuilding this disc at the same time. The AGN appears to self-regulate gas accretion to the centre and onto the super-massive black hole. Surprisingly, from a comparison with Hubble Space Telescope data, we find that the ionised gas outflow is more extended. Nevertheless, the warm outflow is about two orders of magnitude less massive than the molecular outflow. PKS 1549−79 does not seem to follow the scaling relation between bolometric luminosity and the relative importance of warm ionised and molecular outflows claimed to exist for other AGN. We argue that, although PKS 1549−79 hosts a powerful quasar nucleus and an ultra-fast outflow, the radio jet plays a significant role in producing the outflow, which creates a cocoon of disturbed gas that expands into the circumnuclear disc.

2019 ◽  
Vol 628 ◽  
pp. A118 ◽  
Author(s):  
M. Bischetti ◽  
E. Piconcelli ◽  
C. Feruglio ◽  
F. Fiore ◽  
S. Carniani ◽  
...  

We report on the first ALMA observation of the CO(3−2) and rest-frame ∼340 GHz continuum emission in PDS 456, which is the most luminous, radio-quiet QSO in the local Universe (z ≃ 0.18), with a bolometric luminosity LBol ∼ 1047 erg s−1. ALMA angular resolution allowed us to map scales as small as ∼700 pc. The molecular gas reservoir traced by the core of the very bright CO(3−2) emission line is distributed in a compact rotating disk, with a size of ∼1.3 kpc, seen close to face-on (i ∼ 25 deg). Fast CO(3−2) emission in the velocity range v ∈ [ − 1000, 500] km s−1 is also present. Specifically, we detect several blue-shifted clumps out to ∼5 kpc from the nucleus, in addition to a compact (R ≲ 1.2 kpc), broad emission component. These components reveal a galaxy-wide molecular outflow, with a total mass Mmolout ∼ 2.5 × 108 M⊙ (for an αCO = 0.8 M⊙ (K km s−1 pc2)−1) and a mass outflow rate Ṁmol ∼ 290 M⊙ yr−1. The corresponding depletion time is τdep ∼ 8 Myr, shorter than the rate at which the molecular gas is converted into stars, indicating that the detected outflow is potentially able to quench star-formation in the host. The momentum flux of the molecular outflow normalised to the radiative momentum output (i.e. LBol/c) is ≲1, comparable to that of the X-ray ultra-fast outflow (UFO) detected in PDS 456. This is at odds with the expectations for an energy-conserving expansion suggested for most of the large-scale outflows detected in low-luminosity AGNs so far. We suggest three possible scenarios that may explain this observation: (i) in very luminous AGNs such as our target the molecular gas phase is tracing only a fraction of the total outflowing mass; (ii) a small coupling between the shocked gas by the UFO and the host-galaxy interstellar medium (ISM); and (iii) AGN radiation pressure may be playing an important role in driving the outflow.


2021 ◽  
Vol 923 (1) ◽  
pp. 83
Author(s):  
Alberto D. Bolatto ◽  
Adam K. Leroy ◽  
Rebecca C. Levy ◽  
David S. Meier ◽  
Elisabeth A. C. Mills ◽  
...  

Abstract We present the ALMA detection of molecular outflowing gas in the central regions of NGC 4945, one of the nearest starbursts and also one of the nearest hosts of an active galactic nucleus (AGN). We detect four outflow plumes in CO J = 3 − 2 at ∼0.″3 resolution that appear to correspond to molecular gas located near the edges of the known ionized outflow cone and its (unobserved) counterpart behind the disk. The fastest and brightest of these plumes has emission reaching observed line-of-sight projected velocities of over 450 km s−1 beyond systemic, equivalent to an estimated physical outflow velocity v ≳ 600 km s−1 for the fastest emission. Most of these plumes have corresponding emission in HCN or HCO+ J = 4 − 3. We discuss a kinematic model for the outflow emission where the molecular gas has the geometry of the ionized gas cone and shares the rotation velocity of the galaxy when ejected. We use this model to explain the velocities we observe, constrain the physical speed of the ejected material, and account for the fraction of outflowing gas that is not detected due to confusion with the galaxy disk. We estimate a total molecular mass outflow rate M ̇ mol ∼ 20 M ⊙ yr−1 flowing through a surface within 100 pc of the disk midplane, likely driven by a combination of the central starburst and AGN.


2018 ◽  
Vol 612 ◽  
pp. A29 ◽  
Author(s):  
M. Brusa ◽  
G. Cresci ◽  
E. Daddi ◽  
R. Paladino ◽  
M. Perna ◽  
...  

We imaged, with ALMA and ARGOS/LUCI, the molecular gas and dust and stellar continuum in XID2028, which is an obscured quasi-stellar object (QSO) at z = 1.593, where the presence of a massive outflow in the ionised gas component traced by the [OIII]5007 emission has been resolved up to 10 kpc. This target represents a unique test case to study QSO feedback in action at the peak epoch of AGN-galaxy co-evolution. The QSO was detected in the CO(5 − 4) transition and in the 1.3 mm continuum at ~30 and ~20σ significance, respectively; both emissions are confined in the central (<2 kpc) radius area. Our analysis suggests the presence of a fast rotating molecular disc (v ~ 400 km s−1) on very compact scales well inside the galaxy extent seen in the rest-frame optical light (~10 kpc, as inferred from the LUCI data). Adding available measurements in additional two CO transitions, CO(2 − 1) and CO(3 − 2), we could derive a total gas mass of ~1010 M⊙, thanks to a critical assessment of CO excitation and the comparison with the Rayleigh–Jeans continuum estimate. This translates into a very low gas fraction (<5%) and depletion timescales of 40–75 Myr, reinforcing the result of atypical gas consumption conditions in XID2028, possibly because of feedback effects on the host galaxy. Finally, we also detect the presence of high velocity CO gas at ~5σ, which we interpret as a signature of galaxy-scale molecular outflow that is spatially coincident with the ionised gas outflow. XID2028 therefore represents a unique case in which the measurement of total outflowing mass, of ~500–800 M⊙ yr−1 including the molecular and atomic components in both the ionised and neutral phases, was attempted for a high-z QSO.


2019 ◽  
Vol 487 (3) ◽  
pp. 3958-3970 ◽  
Author(s):  
Marlon R Diniz ◽  
Rogemar A Riffel ◽  
Thaisa Storchi-Bergmann ◽  
Rogério Riffel

ABSTRACT We present a 2D mapping of stellar population age components, emission-line fluxes, gas excitation, and kinematics within the inner ∼200 pc of the Seyfert 2 galaxy NGC 2110. We used the Gemini North Integral Field Spectrograph (NIFS) in the J and K bands at a spatial resolution of ∼22  pc. The unresolved nuclear continuum is originated in combined contributions of young stellar population (SP; age ≤ 100  Myr), a featureless AGN continuum and hot dust emission. The young-intermediate SP (100 &lt; age ≤ 700 Myr) is distributed in a ring-shaped structure at ≈140  pc from the nucleus, which is roughly coincident with the lowest values of the stellar velocity dispersion. In the inner ≈115  pc the old SP (age &gt; 2 Gyr) is dominant. The [Fe ii] $\lambda \, 1.2570\, \mu$m emission-line flux distribution is correlated with the radio emission and its kinematics comprise two components, one from gas rotating in the galaxy plane and another from gas in outflow within a bicone-oriented along north–south. These outflows seem to originate in the interaction of the radio jet with the ambient gas producing shocks that are the main excitation mechanism of the [Fe ii] emission. We estimate: (1) an ionized gas mass outflow rate of ∼0.5  M⊙ yr−1 at ∼70 pc from the nucleus; and (2) a kinetic power for the outflow of only 0.05 per cent of the AGN bolometric luminosity implying weak feedback effect on the galaxy.


2020 ◽  
Vol 497 (4) ◽  
pp. 5103-5117
Author(s):  
Guilherme S Couto ◽  
Thaisa Storchi-Bergmann ◽  
Aneta Siemiginowska ◽  
Rogemar A Riffel ◽  
Raffaella Morganti

ABSTRACT We investigate the ionized gas excitation and kinematics in the inner $4.3\, \times \, 6.2$ kpc2 of the merger radio galaxy 4C+29.30. Using optical integral field spectroscopy with the Gemini North Telescope, we present flux distributions, line-ratio maps, peak velocities and velocity dispersion maps as well as channel maps with a spatial resolution of $\approx\! 955\,$ pc. We observe high blueshifts of up to $\sim\! -650\,$$\rm km\, s^{-1}$ in a region ∼1 arcsec south of the nucleus (the southern knot – SK), which also presents high velocity dispersions ($\sim\! 250\,$$\rm km\, s^{-1}$), which we attribute to an outflow. A possible redshifted counterpart is observed north from the nucleus (the northern knot – NK). We propose that these regions correspond to a bipolar outflow possibly due to the interaction of the radio jet with the ambient gas. We estimate a total ionized gas mass outflow rate of $\dot{M}_{\mathrm{ out}} = 25.4 ^{+11.5 }_{ -7.5}\,$ M⊙ yr−1with a kinetic power of $\dot{E} = 8.1 ^{+10.7 }_{ -4.0} \times 10^{42}\,$ erg s−1, which represents $5.8 ^{+7.6 }_{ -2.9} {{\ \rm per\ cent}}$ of the active galactic nucleus (AGN) bolometric luminosity. These values are higher than usually observed in nearby active galaxies with the same bolometric luminosities and could imply a significant impact of the outflows in the evolution of the host galaxy. The excitation is higher in the NK – that correlates with extended X-ray emission, indicating the presence of hotter gas – than in the SK, supporting a scenario in which an obscuring dust lane is blocking part of the AGN radiation to reach the southern region of the galaxy.


2020 ◽  
Vol 633 ◽  
pp. A127 ◽  
Author(s):  
J. A. Fernández-Ontiveros ◽  
K. M. Dasyra ◽  
E. Hatziminaoglou ◽  
M. A. Malkan ◽  
M. Pereira-Santaella ◽  
...  

A prominent jet-driven outflow of CO(2–1) molecular gas is found along the kinematic minor axis of the Seyfert 2 galaxy ESO 420-G13, at a distance of 340–600 pc from the nucleus. The wind morphology resembles the characteristic funnel shape, formed by a highly collimated filamentary emission at the base, and likely traces the jet propagation through a tenuous medium, until a bifurcation point at 440 pc. Here the jet hits a dense molecular core and shatters, dispersing the molecular gas into several clumps and filaments within the expansion cone. We also trace the jet in ionised gas within the inner ≲340 pc using the [Ne II]12.8 μm line emission, where the molecular gas follows a circular rotation pattern. The wind outflow carries a mass of ∼8 × 106 M⊙ at an average wind projected speed of ∼160 km s−1, which implies a mass outflow rate of ∼14 M⊙ yr−1. Based on the structure of the outflow and the budget of energy and momentum, we discard radiation pressure from the active nucleus, star formation, and supernovae as possible launching mechanisms. ESO 420-G13 is the second case after NGC 1377 where a previously unknown jet is revealed through its interaction with the interstellar medium, suggesting that unknown jets in feeble radio nuclei might be more common than expected. Two possible jet-cloud configurations are discussed to explain an outflow at this distance from the AGN. The outflowing gas will likely not escape, thus a delay in the star formation rather than quenching is expected from this interaction, while the feedback effect would be confined within the central few hundred parsecs of the galaxy.


2018 ◽  
Vol 609 ◽  
pp. A75 ◽  
Author(s):  
N. Falstad ◽  
S. Aalto ◽  
J. G. Mangum ◽  
F. Costagliola ◽  
J. S. Gallagher ◽  
...  

Context. Feedback in the form of mass outflows driven by star formation or active galactic nuclei is a key component of galaxy evolution. The luminous infrared galaxy Zw 049.057 harbours a compact obscured nucleus with a possible far-infrared signature of outflowing molecular gas. Due to the high optical depths at far-infrared wavelengths, however, the interpretation of the outflow signature is uncertain. At millimeter and radio wavelengths, the radiation is better able to penetrate the large columns of gas and dust responsible for the obscuration. Aims. We aim to investigate the molecular gas distribution and kinematics in the nucleus of Zw 049.057 in order to confirm and locate the molecular outflow, with the ultimate goal to understand how the nuclear activity affects the host galaxy. Methods. We used high angular resolution observations from the Submillimeter Array (SMA), the Atacama Large Millimeter/submillimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to image the CO J = 2–1 and J = 6–5 emission, the 690 GHz continuum, the radio centimeter continuum, and absorptions by rotationally excited OH. Results. The CO line profiles exhibit wings extending ~ 300 km s-1 beyond the systemic velocity. At centimeter wavelengths, we find a compact (~ 40 pc) continuum component in the nucleus, with weaker emission extending several 100 pc approximately along the major and minor axes of the galaxy. In the OH absorption lines toward the compact continuum, wings extending to a similar velocity as for the CO are only seen on the blue side of the profile. The weak centimeter continuum emission along the minor axis is aligned with a highly collimated, jet-like dust feature previously seen in near-infrared images of the galaxy. Comparison of the apparent optical depths in the OH lines indicate that the excitation conditions in Zw 049.057 differ from those within other OH megamaser galaxies. Conclusions. We interpret the wings in the spectral lines as signatures of a nuclear molecular outflow. A relation between this outflow and the minor axis radio feature is possible, although further studies are required to investigate this possible association and understand the connection between the outflow and the nuclear activity. Finally, we suggest that the differing OH excitation conditions are further evidence that Zw 049.057 is in a transition phase between megamaser and kilomaser activity.


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2021 ◽  
Vol 922 (2) ◽  
pp. L29
Author(s):  
Jianrui Li ◽  
Bjorn H. C. Emonts ◽  
Zheng Cai ◽  
J. Xavier Prochaska ◽  
Ilsang Yoon ◽  
...  

Abstract The link between the circumgalactic medium (CGM) and the stellar growth of massive galaxies at high-z depends on the properties of the widespread cold molecular gas. As part of the SUPERCOLD-CGM survey (Survey of Protocluster ELANe Revealing CO/[C i] in the Lyα-Detected CGM), we present the radio-loud QSO Q1228+3128 at z = 2.2218, which is embedded in an enormous Lyα nebula. ALMA+ACA observations of CO(4–3) reveal both a massive molecular outflow, and a more extended molecular gas reservoir across ∼100 kpc in the CGM, each containing a mass of M H2 ∼ 4–5 × 1010 M ⊙. The outflow and molecular CGM are aligned spatially, along the direction of an inner radio jet. After reanalysis of Lyα data of Q1228+3128 from the Keck Cosmic Web Imager, we found that the velocity of the extended CO agrees with the redshift derived from the Lyα nebula and the bulk velocity of the massive outflow. We propose a scenario where the radio source in Q1228+3128 is driving the molecular outflow and perhaps also enriching or cooling the CGM. In addition, we found that the extended CO emission is nearly perpendicular to the extended Lyα nebula spatially, indicating that the two gas phases are not well mixed, and possibly even represent different phenomena (e.g., outflow versus infall). Our results provide crucial evidence in support of predicted baryonic recycling processes that drive the early evolution of massive galaxies.


2020 ◽  
Vol 501 (1) ◽  
pp. 219-228
Author(s):  
Q Salomé ◽  
A L Longinotti ◽  
Y Krongold ◽  
C Feruglio ◽  
V Chavushyan ◽  
...  

ABSTRACT The narrow-line Seyfert 1 galaxy IRAS 17020+4544 is one of the few sources where both an X-ray ultrafast outflow and a molecular outflow were observed to be consistent with energy conservation. However, IRAS 17020+4544 is less massive and has a much more modest active galactic nucleus (AGN) luminosity than the other examples. Using recent CO(1–0) observations with the NOrthern Extended Millimeter Array, we characterized the molecular gas content of the host galaxy for the first time. We found that the molecular gas is distributed into an apparent central disc of 1.1 × 109 M⊙, and a northern extension located up to 8 kpc from the centre with a molecular gas mass $M_{\mathrm{ H}_2}\sim 10^8\, \mathrm{ M}_\odot$. The molecular gas mass and the CO dynamics in the northern extension reveal that IRAS 17020+4544 is not a standard spiral galaxy, instead it is interacting with a dwarf object corresponding to the northern extension. This interaction possibly triggers the high accretion rate on to the supermassive black hole. Within the main galaxy, which hosts the AGN, a simple analytical model predicts that the molecular gas may lie in a ring, with less molecular gas in the nuclear region. Such distribution may be the result of the AGN activity that removes or photodissociates the molecular gas in the nuclear region (AGN feedback). Finally, we have detected a molecular outflow of mass $M_{\mathrm{ H}_2}=(0.7\!-\!1.2)\times 10^7\, \mathrm{ M}_\odot$ in projection at the location of the northern galaxy, with a similar velocity to that of the massive outflow reported in previous millimetre data obtained by the Large Millimeter Telescope.


Sign in / Sign up

Export Citation Format

Share Document