scholarly journals Protostellar disk formation by a nonrotating, nonaxisymmetric collapsing cloud: model and comparison with observations

2020 ◽  
Vol 635 ◽  
pp. A130 ◽  
Author(s):  
Antoine Verliat ◽  
Patrick Hennebelle ◽  
Anaëlle J. Maury ◽  
Mathilde Gaudel

Context. Planet-forming disks are fundamental objects that are thought to be inherited from large scale rotation through the conservation of angular momentum during the collapse of a prestellar dense core. Aims. We investigate the possibility for a protostellar disk to be formed from a motionless dense core that contains nonaxisymmetric density fluctuations. The rotation is thus generated locally by the asymmetry of the collapse. Methods. We study the evolution of the angular momentum in a nonaxisymmetric collapse of a dense core from an analytical point of view. To test the theory, we performed three-dimensional simulations of a collapsing prestellar dense core using adaptative mesh refinement. We started from a nonaxisymmetrical situation, considering a dense core with random density perturbations that follow a turbulence spectrum. We analyzed the emerging disk by comparing the angular momentum it contains with the one expected from our analytic development. We studied the velocity gradients at different scales in the simulation as is done with observations. Results. We show that the angular momentum in the frame of a stellar object, which is not located at the center of mass of the core, is not conserved due to inertial forces. Our simulations of such nonaxisymmetrical collapse quickly produce accretion disks at the small scales in the core. The analysis of the kinematics at different scales in the simulated core reveals projected velocity gradients of amplitudes similar to the ones observed in protostellar cores and for which directions vary, sometimes even reversing when small and large scales are compared. These complex kinematics patterns appear in recent observations and could be a discriminating feature with models where rotation is inherited from large scales. Our results from simulations without initial rotation are more consistent with these recent observations than when solid-body rotation is initially imprinted. Lastly, we show that the disks that formed in this scenario of nonaxisymmetrical gravitational collapse grow to reach sizes larger than those that are observed, and then fragment. We show that including a magnetic field in these simulations reduces the size of the outcoming disks and it prevents them from fragmenting, as is shown by previous studies. Conclusions. We show that in a nonaxisymmetrical collapse, the formation of a disk can be induced by small perturbations of the initial density field in the core, even in the absence of global large-scale rotation of the core. In this scenario, large disks are generic features that are natural consequences of the hydrodynamical fluid interactions and self-gravity. Since recent observations have shown that most disks are significantly smaller and have a size of a few tens of astronomical units, our study suggests that magnetic braking is the most likely explanation. The kinematics of our model are consistent with typically observed values of velocity gradients and specific angular momentum in protostellar cores. These results open a new avenue in which our understanding of the early phases of disk formation can be explored since they suggest that a fraction of the protostellar disks could be the product of nonaxisymmetrical collapse, rather than directly resulting from the conservation of preexisting large scale angular momentum in rotating cores.

2018 ◽  
Vol 27 (10) ◽  
pp. 1844006
Author(s):  
A. Dorodnitsyn ◽  
T. Kallman

Large scale magnetic field can be easily dragged from galactic scales toward AGN along with accreting gas. There, it can contribute to both the formation of AGN “torus” and help to remove angular momentum from the gas which fuels AGN accretion disk. However the dynamics of such gas is also strongly influenced by the radiative feedback from the inner accretion disk. Here we present results from the three-dimensional simulations of pc-scale accretion which is exposed to intense X-ray heating.


Author(s):  
Mitsuhiro Suzuki ◽  
Takeshi Takeda ◽  
Hideo Nakamura

Presented are experiment results of the Large Scale Test Facility (LSTF) conducted at the Japan Atomic Energy Agency (JAEA) with a focus on core exit thermocouple (CET) performance to detect core overheat during a vessel top break loss-of-coolant accident (LOCA) simulation experiment. The CET temperatures are used to start accident management (AM) action to quickly depressurize steam generator (SG) secondary sides in case of core temperature excursion. Test 6-1 is the first test of the OECD/NEA ROSA Project started in 2005, simulating withdraw of a control rod drive mechanism penetration nozzle at the vessel top head. The break size is equivalent to 1.9% cold leg break. The AM action was initiated when CET temperature rose up to 623K. There was no reflux water fallback onto the CETs during the core heat-up period. The core overheat, however, was detected with a time delay of about 230s. In addition, a large temperature discrepancy was observed between the CETs and the hottest core region. This paper clarifies the reasons of time delay and temperature discrepancy between the CETs and heated core during boil-off including three-dimensional steam flows in the core and core exit. The paper discusses applicability of the LSTF CET performance to pressurized water reactor (PWR) conditions and a possibility of alternative indicators for earlier AM action than in Test 6-1 is studied by using symptom-based plant parameters such as a reactor vessel water level detection.


Author(s):  
C. Altuntas

<p><strong>Abstract.</strong> Image based dense point cloud creation is easy and low-cost application for three dimensional digitization of small and large scale objects and surfaces. It is especially attractive method for cultural heritage documentation. Reprojection error on conjugate keypoints indicates accuracy of the model and keypoint localisation in this method. In addition, sequential registration of the images from large scale historical buildings creates big cumulative registration error. Thus, accuracy of the model should be increased with the control points or loop close imaging. The registration of point point cloud model into the georeference system is performed using control points. In this study historical Sultan Selim Mosque that was built in sixteen century by Great Architect Sinan was modelled via photogrammetric dense point cloud. The reprojection error and number of keypoints were evaluated for different base/length ratio. In addition, georeferencing accuracy was evaluated with many configuration of control points with loop and without loop closure imaging.</p>


2018 ◽  
Vol 617 ◽  
pp. A27 ◽  
Author(s):  
A. Punanova ◽  
P. Caselli ◽  
J. E. Pineda ◽  
A. Pon ◽  
M. Tafalla ◽  
...  

Context. Nitrogen bearing species, such as NH3, N2H+, and their deuterated isotopologues show enhanced abundances in CO-depleted gas, and thus are perfect tracers of dense and cold gas in star-forming regions. The Taurus molecular cloud contains the long L1495 filament providing an excellent opportunity to study the process of star formation in filamentary environments. Aims. We study the kinematics of the dense gas of starless and protostellar cores traced by the N2D+(2–1), N2H+(1–0), DCO+(2–1), and H13CO+(1–0) transitions along the L1495 filament and the kinematic links between the cores and surrounding molecular cloud. Methods. We measured velocity dispersions, local and total velocity gradients, and estimate the specific angular momenta of 13 dense cores in the four transitions using on-the-fly observations with the IRAM 30-m antenna. To study a possible connection to the filament gas, we used the C18O(1–0) observations. Results. The velocity dispersions of all studied cores are mostly subsonic in all four transitions and are similar and almost constant dispersion across the cores in N2D+(2–1) and N2H+(1–0). A small fraction of the DCO+(2–1) and H13CO+(1–0) lines show transonic dispersion and exhibit a general increase in velocity dispersion with line intensity. All cores have velocity gradients (0.6–6.1 km s−1 pc−1), typical of dense cores in low-mass star-forming regions. All cores show similar velocity patterns in the different transitions, simple in isolated starless cores, and complex in protostellar cores and starless cores close to young stellar objects where gas motions can be affected by outflows. The large-scale velocity field traced by C18O(1–0) does not show any perturbation due to protostellar feedback and does not mimic the local variations seen in the other four tracers. Specific angular momentum J∕M varies in a range (0.6–21.0) × 1020 cm2 s−1, which is similar to the results previously obtained for dense cores. The J∕M measured in N2D+(2–1) is systematically lower than J∕M measured in DCO+(2–1) and H13CO+(1–0). Conclusions. All cores show similar properties along the 10 pc-long filament. N2D+(2–1) shows the most centrally concentrated structure, followed by N2H+(1–0) and DCO+(2–1), which show similar spatial extent, and H13CO+(1–0). The non-thermal contribution to the velocity dispersion increases from higher to lower density tracers. The change of magnitude and direction of the total velocity gradients depending on the tracer used indicates that internal motions change at different depths within the cloud. N2D+ and N2H+ show smaller gradients than the lower density tracers DCO+ and H13CO+, implying a loss of specific angular momentum at small scales. At the level of cloud-core transition, the core’s external envelope traced by DCO+ and H13CO+ is spinning up, which is consistent with conservation of angular momentum during core contraction. C18O traces the more extended cloud material whose kinematics is not affected by the presence of dense cores. The decrease in specific angular momentum towards the centres of the cores shows the importance of local magnetic fields to the small-scale dynamics of the cores. The random distributions of angles between the total velocity gradient and large-scale magnetic field suggests that magnetic fields may become important only in high density gas within dense cores.


2019 ◽  
Vol 490 (1) ◽  
pp. 527-539 ◽  
Author(s):  
Che-Yu Chen ◽  
Shaye Storm ◽  
Zhi-Yun Li ◽  
Lee G Mundy ◽  
David Frayer ◽  
...  

ABSTRACT We present the first results of high-spectral resolution (0.023 km s−1) N2H+ observations of dense gas dynamics at core scales (∼0.01 pc) using the recently commissioned Argus instrument on the Green Bank Telescope (GBT). While the fitted linear velocity gradients across the cores measured in our targets nicely agree with the well-known power-law correlation between the specific angular momentum and core size, it is unclear if the observed gradients represent core-scale rotation. In addition, our Argus data reveal detailed and intriguing gas structures in position–velocity (PV) space for all five targets studied in this project, which could suggest that the velocity gradients previously observed in many dense cores actually originate from large-scale turbulence or convergent flow compression instead of rigid-body rotation. We also note that there are targets in this study with their star-forming discs nearly perpendicular to the local velocity gradients, which, assuming the velocity gradient represents the direction of rotation, is opposite to what is described by the classical theory of star formation. This provides important insight on the transport of angular momentum within star-forming cores, which is a critical topic on studying protostellar disc formation.


2019 ◽  
Vol 487 (4) ◽  
pp. 5346-5362 ◽  
Author(s):  
Suk Sien Tie ◽  
David H Weinberg ◽  
Paul Martini ◽  
Wei Zhu ◽  
Sébastien Peirani ◽  
...  

ABSTRACT Using the Lyman α (Lyα) Mass Association Scheme, we make theoretical predictions for the three-dimensional three-point correlation function (3PCF) of the Lyα forest at redshift z = 2.3. We bootstrap results from the (100 h−1 Mpc)3 Horizon hydrodynamic simulation to a (1 h−1 Gpc)3N-body simulation, considering both a uniform ultraviolet background (UVB) and a fluctuating UVB sourced by quasars with a comoving nq ≈ 10−5h3 Mpc−3 placed either in massive haloes or randomly. On scales of 10–30 h−1 Mpc, the flux 3PCF displays hierarchical scaling with the square of the two-point correlation function (2PCF), but with an unusual value of Q ≡ ζ123/(ξ12ξ13 + ξ12ξ23 + ξ13ξ23) ≈ −4.5 that reflects the low bias of the Lyα forest and the anticorrelation between mass density and transmitted flux. For halo-based quasars and an ionizing photon mean free path of λ = 300 h−1 Mpc comoving, UVB fluctuations moderately depress the 2PCF and 3PCF, with cancelling effects on Q. For λ = 100 or 50 h−1 Mpc, UVB fluctuations substantially boost the 2PCF and 3PCF on large scales, shifting the hierarchical ratio to Q ≈ −3. We scale our simulation results to derive rough estimate of the detectability of the 3PCF in current and future observational data sets for the redshift range z = 2.1–2.6. At r = 10 and 20 h−1 Mpc, we predict a signal-to-noise ratio (SNR) of ∼9 and ∼7, respectively, for both Baryon Oscillation Spectroscopic Survey (BOSS) and extended BOSS (eBOSS), and ∼37 and ∼25 for Dark Energy Spectroscopic Instrument (DESI). At r = 40 h−1 Mpc the predicted SNR is lower by a factor of ∼3–5. Measuring the flux 3PCF would provide a novel test of the conventional paradigm of the Lyα forest and help separate the contributions of UVB fluctuations and density fluctuations to Lyα forest clustering, thereby solidifying its foundation as a tool of precision cosmology.


2017 ◽  
Vol 24 (3) ◽  
pp. 307-328 ◽  
Author(s):  
Elisa Johanna Spreitzer ◽  
Manuel Patrik Marschalik ◽  
Peter Spichtinger

Abstract. Ice clouds, so-called cirrus clouds, occur very frequently in the tropopause region. A special class are subvisible cirrus clouds with an optical depth lower than 0.03, associated with very low ice crystal number concentrations. The dominant pathway for the formation of these clouds is not known well. It is often assumed that heterogeneous nucleation on solid aerosol particles is the preferred mechanism although homogeneous freezing of aqueous solution droplets might be possible, since these clouds occur in the low-temperature regime T < 235 K. For investigating subvisible cirrus clouds as formed by homogeneous freezing we develop a reduced cloud model from first principles, which is close enough to complex models but is also simple enough for mathematical analysis. The model consists of a three-dimensional set of ordinary differential equations, and includes the relevant processes as ice nucleation, diffusional growth and sedimentation. We study the formation and evolution of subvisible cirrus clouds in the low-temperature regime as driven by slow vertical updraughts (0 < w ≤ 0. 05 m s−1). The model is integrated numerically and also investigated by means of theory of dynamical systems. We found two qualitatively different states for the long-term behaviour of subvisible cirrus clouds. The first state is a stable focus; i.e. the solution of the differential equations performs damped oscillations and asymptotically reaches a constant value as an equilibrium state. The second state is a limit cycle in phase space; i.e. the solution asymptotically approaches a one-dimensional attractor with purely oscillatory behaviour. The transition between the states is characterised by a Hopf bifurcation and is determined by two parameters – vertical updraught velocity and temperature. In both cases, the properties of the simulated clouds agree reasonably well with simulations from a more detailed model, with former analytical studies, and with observations of subvisible cirrus, respectively. The reduced model can also provide qualitative interpretations of simulations with a complex and more detailed model at states close to bifurcation qualitatively. The results indicate that homogeneous nucleation is a possible formation pathway for subvisible cirrus clouds. The results motivate a minimal model for subvisible cirrus clouds (SVCs), which might be used in future work for the development of parameterisations for coarse large-scale models, representing structures of clouds.


2019 ◽  
Vol 633 ◽  
pp. A3 ◽  
Author(s):  
M. Kuffmeier ◽  
F. G. Goicovic ◽  
C. P. Dullemond

Context. Observations of arc-like structures and luminosity bursts of stars >1 Myr in age indicate that at least some stars undergo late infall events. Aims. We investigate scenarios of replenishing the mass reservoir around a star via capturing and infalling events of cloudlets. Methods. We carried out a total of 24 three-dimensional hydrodynamical simulations of cloudlet encounters with a Herbig star of mass 2.5 M⊙ using the moving-mesh code AREPO. To account for the two possibilities of a star or a cloudlet traveling through the interstellar medium (ISM), we put either the star or the cloudlet at rest with respect to the background gas. Results. For absent cooling in the adiabatic runs, almost none of the cloudlet gas is captured as a result of high thermal pressure. However, second-generation disks easily form when accounting for cooling of the gas. The disk radii range from several 100 to ~1000 au and associated arc-like structures up to 104 au in length form around the star for runs with and without stellar irradiation. Consistent with angular momentum conservation, the arcs and disks are larger for larger impact parameters. Accounting for turbulence in the cloudlet only mildly changes the model outcome. In the case of the star being at rest with the background gas, the disk formation and mass replenishment process is more pronounced and the associated arc-shaped streamers are longer lived. Conclusions. The results of our models confirm that late encounter events lead to the formation of transitional disks associated with arc-shaped structures such as observed for AB Aurigae or HD 100546. In addition, we find that second-generation disks and their associated filamentary arms are longer lived (>105 yr) in infall events, when the star is at rest with the background gas.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Zhao Zhou ◽  
Junxing Wang

Due to great velocity gradients among the outgoing flow, it is much common to form large-scale reverse flow with oblique movements outside the conventional separated stilling basin. Aimed at above problems, this paper proposes to remove the longitudinal splitter wall and then physically and numerically investigate the corresponding influence upon the compound stilling basin. The standard k-ε, renormalization group k-ε, realizable k-ε, and large eddy simulation turbulence models are all employed to reveal downstream three-dimensional flow field. Experimental validation of numerical results shows that the renormalization group k-ε turbulence model is the most successful in predicting the flow field among the four models. Both methods prove that the removed splitter wall exerts great impact upon downstream stilling basin. In view of the removed splitter wall, discharging inflow would greatly diffuse to form a typical three-dimensional (3D) hydraulic jump with large-scale reverse flow. High energy dissipation region and high turbulent kinetic energy region are both moved upstream. Thus, the velocity decay among the discharging flow in the compound stilling basin is significantly enhanced. Compared to the separated stilling basin, the maximum velocity and average velocity of the outgoing flow, respectively, decrease more than 30%, and 20% in the compound stilling basin. Additionally, the velocity gradients between the left and the right outgoing flow reduce by over 65% with turbulent kinetic energy gradients almost down to zero. The outgoing flow from the compound stilling basin becomes much uniform with the phenomenon of obliquely moving flow totally eliminated.


Sign in / Sign up

Export Citation Format

Share Document