scholarly journals A more detailed look at Galactic magnetic field models: using free–free absorption in HII regions

2020 ◽  
Vol 636 ◽  
pp. A2
Author(s):  
I. M. Polderman ◽  
M. Haverkorn ◽  
T. R. Jaffe

Context. Cosmic rays (CRs) and the Galactic magnetic field (GMF) are fundamental actors in many processes in the Milky Way. The observed interaction product of these actors is Galactic synchrotron emission integrated over the line of sight (LOS). A comparison to simulations can be made with this tracer using existing GMF models and CR density models. This probes the GMF strength and morphology and the CR density. Aims. Our aim is to provide insight into the Galactic CR density and the distribution and morphology of the GMF strength by exploring and explaining the differences between the simulations and observations of synchrotron intensity. Methods. At low radio frequencies HII regions become opaque due to free–free absorption. Using these HII regions we can measure the synchrotron intensity over a part of the LOS through the Galaxy. The measured intensity per unit path length, that is, the emissivity, for HII regions at different distances, allows us to probe the variation in synchrotron emission not only across the sky but also in the third dimension of distance. Performing these measurements on a large scale is one of the new applications of the window opened by current low-frequency arrays. Using a number of existing GMF models in conjunction with the Galactic CR modeling code GALPROP, we can simulate these synchrotron emissivities. Results. We present an updated catalog, compiled from the literature, of low-frequency absorption measurements of HII regions, their distances, and electron temperatures. We report a simulated emissivity that shows a compatible trend for HII regions that are near the observer. However, we observe a systematically increasing synchrotron emissivity for HII regions that are far from the observer, which is not compatible with the values simulated by the GMF models and GALPROP. Conclusions. Current GMF models plus a GALPROP generated CR density model cannot explain low-frequency absorption measurements. One possibility is that distances to all HII regions catalogued at the kinematic “far” distance are erroneously determined, although this is unlikely since it ignores all evidence for far distances in the literature. However, a detection bias due to the nature of this tracer requires us to keep in mind that certain sources may be missed in an observation. The other possibilities are an enhanced emissivity in the outer Galaxy or a diminished emissivity in the inner Galaxy.

2019 ◽  
Vol 621 ◽  
pp. A127 ◽  
Author(s):  
I. M. Polderman ◽  
M. Haverkorn ◽  
T. R. Jaffe ◽  
M. I. R. Alves

Context. Cosmic rays (CRs) and magnetic fields are dynamically important components in the Galaxy, and their energy densities are comparable to that of the turbulent interstellar gas. The interaction of CRs and Galactic magnetic fields (GMF) produces synchrotron radiation clearly visible in the radio regime. Detailed measurements of synchrotron radiation averaged over the line-of-sight (LOS), so-called synchrotron emissivities, can be used as a tracer of the CR density and GMF strength. Aims. Our aim is to model the synchrotron emissivity in the Milky Way using a three-dimensional dataset instead of LOS-integrated intensity maps on the sky. Methods. Using absorbed HII regions, we measured the synchrotron emissivity over a part of the LOS through the Galaxy, changing from a two-dimensional to a three-dimensional view. Performing these measurements on a large scale is one of the new applications of the window opened by current low-frequency arrays. Using various simple axisymmetric emissivity models and a number of GMF-based emissivity models, we were able to simulate the synchrotron emissivities and compare them to the observed values in the catalog. Results. We present a catalog of low-frequency absorption measurements of HII regions, their distances and electron temperatures, compiled from literature. These data show that the axisymmetric emissivity models are not complex enough, but the GMF-based emissivity models deliver a reasonable fit. These models suggest that the fit can be improved by either an enhanced synchrotron emissivity in the outer reaches of the Milky Way or an emissivity drop near the Galactic center. Conclusions. Current GMF models plus a constant CR density model cannot explain low-frequency absorption measurements, but the fits improved with slight (ad hoc) adaptations. It is clear that more detailed models are needed, but the current results are very promising.


2019 ◽  
Vol 210 ◽  
pp. 04005 ◽  
Author(s):  
Michael Unger ◽  
Glennys Farrar

We discuss the global modeling of the properties of the Galactic Magnetic Field (GMF). Several improvements and variations of the model of the GMF from Jansson & Farrar (2012) (JF12) are investigated in an analysis constrained by all-sky rotation measures of extragalactic sources and polarized and unpolarized synchrotron emission data from WMAP and Planck. We present the impact of the investigated model variations on the propagation of ultrahigh-energy cosmic rays in the Galaxy


1985 ◽  
Vol 19 (1) ◽  
pp. 431-435

During the triennium under review many papers reported on studies of the structure of the galactic magnetic field. Andreasyan used rotation measures (RM) of large samples of extra-galactic radio sources and pulsars (29.156.001) or radio sources (32.156.002), and Inoue and Tabara (31.156.011) used in addition optical polarization of stars to investigate the direction of the large-scale regular magnetic field. Thomson and Nelson analyse the RMs of 459 extragalactic sources (32. 161.001) to determine the best fit parameters for a galactic magnetic-field model, and find agreement with their earlier work using pulsars (27.156.009). Similarly, Sofue and Fujimoto (33.155.011) show that the characteristic features of the RM distribution on the sky are well reproduced by a model in which the magnetic field is in a bisymmetric, two-armed logarithmic spiral configuration. Finally, Welter, Perry and Kronberg (37.159.096) present a statistical analysis of the (Galaxy-corrected) residual rotation measure (RRM) of 116 QSOs.


2020 ◽  
Vol 499 (3) ◽  
pp. 3673-3689
Author(s):  
J L West ◽  
R N Henriksen ◽  
K Ferrière ◽  
A Woodfinden ◽  
T Jaffe ◽  
...  

ABSTRACT We search for observational signatures of magnetic helicity in data from all-sky radio polarization surveys of the Milky Way Galaxy. Such a detection would help confirm the dynamo origin of the field and may provide new observational constraints for its shape. We compare our observational results to simulated observations for both a simple helical field, and for a more complex field that comes from a solution to the dynamo equation. Our simulated observations show that the large-scale helicity of a magnetic field is reflected in the large-scale structure of the fractional polarization derived from the observed synchrotron radiation and Faraday depth of the diffuse Galactic synchrotron emission. Comparing the models with the observations provides evidence for the presence of a quadrupolar magnetic field with a vertical component that is pointing away from the observer in both hemispheres of the Milky Way Galaxy. Since there is no reason to believe that the Galactic magnetic field is unusual when compared to other galaxies, this result provides further support for the dynamo origin of large-scale magnetic fields in galaxies.


2007 ◽  
Vol 16 (12b) ◽  
pp. 2399-2405 ◽  
Author(s):  
FRANCESC FERRER ◽  
TANMAY VACHASPATI

Observations of the Milky Way by the SPI/INTEGRAL satellite have confirmed the presence of a strong 511 keV gamma ray line emission from the bulge, which requires an intense source of positrons in the galactic center. These observations are hard to account for by conventional astrophysical scenarios, whereas other proposals, such as light DM, face stringent constraints from the diffuse gamma ray background. Here we suggest that light superconducting strings could be the source of the observed 511 keV emission. The associated particle physics, at the ~ 1 TeV scale, is within the reach of planned accelerator experiments, while the distinguishing spatial distribution, proportional to the galactic magnetic field, could be mapped by SPI or by future, more sensitive satellite missions.


2008 ◽  
Vol 4 (S259) ◽  
pp. 603-612 ◽  
Author(s):  
Wolfgang Reich ◽  
Patricia Reich

AbstractOur position inside the Galaxy requires all-sky surveys to reveal its large-scale properties. The zero-level calibration of all-sky surveys differs from standard ‘relative’ measurements, where a source is measured in respect to its surroundings. All-sky surveys aim to include emission structures of all angular scales exceeding their angular resolution including isotropic emission components. Synchrotron radiation is the dominating emission process in the Galaxy up to frequencies of a few GHz, where numerous ground based surveys of the total intensity up to 1.4 GHz exist. Its polarization properties were just recently mapped for the entire sky at 1.4 GHz. All-sky total intensity and linear polarization maps from WMAP for frequencies of 23 GHz and higher became available and complement existing sky maps. Galactic plane surveys have higher angular resolution using large single-dish or synthesis telescopes. Polarized diffuse emission shows structures with no relation to total intensity emission resulting from Faraday rotation effects in the interstellar medium. The interpretation of these polarization structures critically depends on a correct setting of the absolute zero-level in Stokes U and Q.


2019 ◽  
Vol 621 ◽  
pp. A97 ◽  
Author(s):  
A. Bracco ◽  
S. Candelaresi ◽  
F. Del Sordo ◽  
A. Brandenburg

Context. The analysis of the full-sky Planck polarization data at 850 μm revealed unexpected properties of the E- and B-mode power spectra of dust emission in the interstellar medium (ISM). The positive cross-correlations over a wide range of angular scales between the total dust intensity, T, and both E and (most of all) B modes has raised new questions about the physical mechanisms that affect dust polarization, such as the Galactic magnetic field structure. This is key both to better understanding ISM dynamics and to accurately describing Galactic foregrounds to the polarization of the cosmic microwave background (CMB). In particular, in the quest to find primordial B modes of the CMB, the observed positive cross-correlation between T and B for interstellar dust requires further investigation towards parity-violating processes in the ISM. Aims. In this theoretical paper we investigate the possibility that the observed cross-correlations in the dust polarization power spectra, and specifically the one between T and B, can be related to a parity-odd quantity in the ISM such as the magnetic helicity. Methods. We produce synthetic dust polarization data, derived from 3D analytical toy models of density structures and helical magnetic fields, to compare with the E and B modes of observations. We present several models. The first is an ideal fully helical isotropic case, such as the Arnold-Beltrami-Childress field. Second, following the nowadays favored interpretation of the T–E signal in terms of the observed alignment between the magnetic field morphology and the filamentary density structure of the diffuse ISM, we design models for helical magnetic fields wrapped around cylindrical interstellar filaments. Lastly, focusing on the observed T–B correlation, we propose a new line of interpretation of the Planck observations advocating the presence of a large-scale helical component of the Galactic magnetic field in the solar neighborhood. Results. Our analysis shows that: I) the sign of magnetic helicity does not affect E and B modes for isotropic magnetic-field configurations; II) helical magnetic fields threading interstellar filaments cannot reproduce the Planck results; and III) a weak helical left-handed magnetic field structure in the solar neighborhood may explain the T–B correlation seen in the Planck data. Such a magnetic-field configuration would also account for the observed large-scale T–E correlation. Conclusions. This work suggests a new perspective for the interpretation of the dust polarization power spectra that supports the imprint of a large-scale structure of the Galactic magnetic field in the solar neighborhood.


2009 ◽  
Vol 27 (2) ◽  
pp. 885-894 ◽  
Author(s):  
G. Kleindienst ◽  
K.-H. Glassmeier ◽  
S. Simon ◽  
M. K. Dougherty ◽  
N. Krupp

Abstract. Recent magnetic field investigations made onboard the Cassini spacecraft in the magnetosphere of Saturn show the existence of a variety of ultra low frequency plasma waves. Their frequencies suggest that they are presumably not eigenoscillations of the entire magnetospheric system, but excitations confined to selected regions of the magnetosphere. While the main magnetic field of Saturn shows a distinct large scale modulation of approximately 2 nT with a periodicity close to Saturn's rotation period, these ULF pulsations are less obvious superimposed oscillations with an amplitude generally not larger than 3 nT and show a package-like structure. We have analyzed these wave packages and found that they are correlated to a certain extent with the large scale modulation of the main magnetic field. The spatial localization of the ULF wave activity is represented with respect to local time and Kronographic coordinates. For this purpose we introduce a method to correct the Kronographic longitude with respect to a rotation period different from its IAU definition. The observed wave packages occur in all magnetospheric regions independent of local time, elevation, or radial distance. Independent of the longitude correction applied the wave packages do not occur in an accentuated Kronographic longitude range, which implies that the waves are not excited or confined in the same selected longitude ranges at all times or that their lifetime leads to a variable phase with respect to the longitudes where they have been exited.


2020 ◽  
Vol 496 (4) ◽  
pp. 4749-4759
Author(s):  
Axel Brandenburg ◽  
Ray S Furuya

ABSTRACT We study the prospects of detecting magnetic helicity in galaxies by observing the dust polarization of the edge-on galaxy NGC 891. Our numerical results of mean-field dynamo calculations show that there should be a large-scale component of the rotationally invariant parity-odd B polarization that we predict to be negative in the first and third quadrants, and positive in the second and fourth quadrants. The large-scale parity-even E polarization is predicted to be negative near the axis and positive further away in the outskirts. These properties are shown to be mostly a consequence of the magnetic field being azimuthal and the polarized intensity being maximum at the centre of the galaxy and are not a signature of magnetic helicity.


Sign in / Sign up

Export Citation Format

Share Document