scholarly journals Near-ultraviolet detections of four dwarf nova candidates in the globular cluster 47 Tucanae

2020 ◽  
Vol 634 ◽  
pp. A132
Author(s):  
David Modiano ◽  
Aastha S. Parikh ◽  
Rudy Wijnands

We investigate near-ultraviolet variability in the Galactic globular cluster (GC) 47 Tucanae (47 Tuc). This work was undertaken within the GC sub-project of the Transient UV Objects project, a programme which aims to find and study transient and strongly variable UV sources. Globular clusters are ideal targets for transient searches because of their high stellar densities and large populations of variable systems. Using all 75 archival observations of 47 Tuc obtained with the UV/optical telescope (UVOT) aboard the Neil Gehrels Swift observatory with the uvm2 filter, we searched for UV variability using a specialised pipeline which utilises difference image analysis. We found four clear transients, hereafter SW1–4, with positions consistent with those of known cataclysmic variables (CVs) or CV candidates identified previously using Hubble Space Telescope observations. All four sources exhibit significant outbursts, likely brightening by several orders of magnitude. Based on the inferred outburst properties and the association with known CVs, we tentatively identify the UV transients as CV-dwarf novae (DNe). Two DNe have been previously observed in 47 Tuc: V2, which has a position consistent with that of SW4; and AKO 9, which was not in outburst during any of the UVOT observations. We thus increase the known number of DNe in 47 Tuc to 5 and the total number of detected DNe in all Galactic GCs combined from 14 to 17. We discuss our results in the context of the apparent scarcity of DNe in GCs. We suggest that the likely cause is observational biases, such as limited sensitivity due to the high background from unresolved stars in the GC and limited angular resolution of the telescopes used. We additionally detected one strongly variable source in 47 Tuc, which could be identified as the known RR Lyrae star HV 810. We found its period to have significantly increased with respect to that measured from data taken in 1988.

1989 ◽  
Vol 111 ◽  
pp. 285-285
Author(s):  
H.A. Smith ◽  
J.R. Kuhn ◽  
J. Curtis

AbstractBVR observations of the relatively metal-rich globular cluster NGC 6388 have been obtained with a CCD on the CTIO 0.9 m telescope. Eighteen possible short period variable stars have been discovered in or near the cluster. At least 10 of these are probable RR Lyrae members of NGC 6388. We confirm the finding of Hazen and Hesser that this cluster is one of the most metal-rich to contain a significant number of RR Lyraes. A program of CCD photometry of field and cluster variable stars has been initiated on the 0.6m telescope of the Michigan State University Observatory.


1989 ◽  
Vol 111 ◽  
pp. 121-140
Author(s):  
Allan Sandage

AbstractIt is shown that the intrinsic spread in the absolute magnitudes of the RR Lyrae variables in a given globular cluster can reach 0.5 magnitudes at a given period or at a given color, due to luminosity evolution away from the zero age horizontal (ZAHB). The size of this intrinsic luminosity spread is largest in clusters of the highest metallicity.The absolute magnitude of the ZAHB itself also differs from cluster to cluster as a function of metallicity, being brightest in clusters of the lowest metallicity. Three independent methods of calibrating the ZAHB RR Lyrae luminosities each show a strong variation of MV(RR) with [Fe/H]. The pulsation equation of P<ρ>0.5 = Q(M,Te, L) used with the observed periods, temperatures, and masses of field and of cluster RR Lyraes gives the very steep luminosity-metallicity dependence of dMv(RR)/d[Fe/H] = 0.42. Main sequence fitting of the color-magnitude diagrams of clusters which have modern main-sequence photometry gives a confirming steep slope of 0.39. A summary of Baade-Wesselink MV(RR) values for field stars determined in four independent recent studies also shows a luminosity-metallicity dependence, but less steep with a slope of dMV(RR)/d[Fe/H] = 0.21.Observations show that the magnitude difference between the main sequence turn-off point and the ZAHB in a number of well observed globular clusters is independent of [Fe/H], and has a stable value of dV = 3.54 with a disperion of only 0.1 magnitudes. Using this fact, the absolute magnitude of the main sequence turn-off is determined in any given globular cluster from the observed apparent magnitude of the ZAHB by adopting any particular MV(RR) = f([Fe/H]) calibration.Ages of the clusters are shown to vary with [Fe/H] by amounts that depend upon the slopes of the MV(RR) = f([Fe/H]) calibrations. The calibrations show that there would be a steep dependence of the age on [Fe/H] if MV(RR) does not depend on [Fe/H]. No dependence of age on metallicity exists if the RR Lyrae luminosities depend on [Fe/H] as dMV(RR)/d[Fe/H] = 0.37. If Oxygen is not enhanced as [Fe/H] decreases, the absolute average age of the globular cluster system is 16 Gyr, independent of [Fe/H], using the steep MV(RR)/[Fe/H] calibration that is favored. If Oxygen is enhanced by [O/Fe] = – 0.14 [Fe/H] + 0.40 for [Fe/H] < –1.0, as suggested from the observations of field subdwarfs, then the age of the globular cluster system decreases to 13 Gyr, again independent of [Fe/H], if the RR Lyrae ZAHB luminosities have a metallicity dependence of dMV(RR)/d[Fe/H] = 0.37.


2019 ◽  
Vol 490 (2) ◽  
pp. 1498-1508
Author(s):  
Nicolas Longeard ◽  
Nicolas Martin ◽  
Rodrigo A Ibata ◽  
Michelle L M Collins ◽  
Benjamin P M Laevens ◽  
...  

ABSTRACT We present a photometric and spectroscopic study of the Milky Way satellite Laevens 3. Using MegaCam/Canada–France–Hawaii Telescope $g$ and $i$ photometry and Keck II/DEIMOS multi-object spectroscopy, we refine the structural and stellar properties of the system. The Laevens 3 colour–magnitude diagram shows that it is quite metal-poor, old ($13.0 \pm 1.0$ Gyr), and at a distance of $61.4 \pm 1.0$ kpc, partly based on two RR Lyrae stars. The system is faint ($M_V = -2.8^{+0.2}_{-0.3}$ mag) and compact ($r_h = 11.4 \pm 1.0$ pc). From the spectroscopy, we constrain the systemic metallicity (${\rm [Fe/H]}_\mathrm{spectro} = -1.8 \pm 0.1$ dex) but the metallicity and velocity dispersions are both unresolved. Using Gaia DR2, we infer a mean proper motion of $(\mu _\alpha ^*,\mu _\delta)=(0.51 \pm 0.28,-0.83 \pm 0.27)$ mas yr−1, which, combined with the system’s radial velocity ($\langle v_r\rangle = -70.2 \pm 0.5 {\rm \, km \,\, s^{-1}}$), translates into a halo orbit with a pericenter and apocenter of $40.7 ^{+5.6}_{-14.7}$ and $85.6^{+17.2}_{-5.9}$ kpc, respectively. Overall, Laevens 3 shares the typical properties of the Milky Way’s outer halo globular clusters. Furthermore, we find that this system shows signs of mass segregation that strengthens our conclusion that Laevens 3 is a globular cluster.


1996 ◽  
Vol 174 ◽  
pp. 171-180
Author(s):  
Jonathan E. Grindlay

The studies of compact binaries containing an accreting white dwarf or neutron star in the dense cores of globular clusters have made considerable progress in the past few years as a result of the high resolution images obtained with HST and ROSAT. It is now clear that cluster cores contain a significant population of these systems which must constrain the similarly large populations of millisecond pulsars as well as dynamical histories of clusters. The population of dim x-ray sources appears to be dominated by cataclysmic variables (CVs) formed by tidal capture and not exchange collisions. Our recent HST/FOS spectra of the first CVs in a cluster core, summarized here in more detail, suggest that cluster cores may contain a significant population of magnetic CVs. The required magnetic WDs may arise in spun-up cores of blue stragglers.


1988 ◽  
Vol 126 ◽  
pp. 347-366
Author(s):  
Jonathan E. Grindlay

X-ray binaries in globular clusters provide a powerful tool for the exploration of the evolution of compact binaries and their host globular clusters. Recent x-ray and optical studies of these systems have yielded long-sought binary periods and fundamental properties for two sources (in NGC 6624 and M 15). It appears that tidal capture formation of compact binaries in globular clusters can proceed by several different routes and lead to exotic systems such as the white dwarf-neutron star binary with an 11-minute period recently discovered in NGC 6624. Combined with previously reported long-term periods for several globular cluster (and field) x-ray sources, this suggests again that many of these systems may in fact be hierarchical triple systems. The prospects for forming these in the dense cores of clusters undergoing core collapse is discussed, and searches for color gradients in the cores of globular clusters showing cusps in their central surface brightness distribution are presented. A program to test for the high central density of binaries (and triples) expected in cusp clusters by searching for diffuse line emission from their constituent cataclysmic variables is briefly described. Finally, the case for globular cluster disruption and the formation of galactic x-ray burst source is reviewed in light of recent developments.


2019 ◽  
Vol 14 (S351) ◽  
pp. 404-407
Author(s):  
Diogo Belloni ◽  
Mirek Giersz ◽  
Liliana E. Rivera Sandoval ◽  
Abbas Askar ◽  
Pawel Ciecielag

AbstractWe have been investigating populations of cataclysmic variables (CVs) in a set of more than 300 globular cluster (GC) models evolved with themoccacode.[-120pt] One of the main questions we have intended to answer is whether most CVs in GCs are dynamically formed or not. Contrary to what has been argued for a long time, we found that dynamical destruction of primordial CV progenitors is much stronger in GCs than dynamical formation of CVs. In particular, we found that, on average, the detectable CV population is predominantly composed of CVs formed via a typical common envelope phase (≳70 per cent). However, core-collapsed models tend to have higher fractions of bright CVs than non-core-collapsed ones, which suggests then that the formation of CVs is indeed slightly favoured through strong dynamical interactions in core-collapsed GCs, due to the high stellar densities in their cores.


1980 ◽  
Vol 88 ◽  
pp. 561-565 ◽  
Author(s):  
R. F. Webbink

A brief survey of known eclipsing binaries and cataclysmic variables in globular cluster fields is presented. None of the 47 known or suspected eclipsing variables is a promising candidate, although a very few remain possible members. V101 in M5 is a good candidate for membership, among 5 known or suspected dwarf novae. Three novae have been discovered in globular cluster fields, of which two are almost certainly members. Attention is also called to the eclipsing binary V80, a system which appears to contain an RRc variable, in the dwarf spheroidal galaxy in Ursa Minor.


2007 ◽  
Vol 3 (S246) ◽  
pp. 361-362
Author(s):  
A. Dieball ◽  
C. Knigge ◽  
D. R. Zurek ◽  
M. M. Shara ◽  
K. S. Long ◽  
...  

AbstractWe present an analysis of our deep far- (FUV) and near-ultraviolet (NUV) photometry of the core region of the dense globular cluster M 15. Our FUV-NUV colour-magnitude diagram (CMD) is the deepest one presented for a globular cluster so far, and shows all hot stellar populations expected in a globular cluster, such as horizontal branch stars, blue stragglers, white dwarfs, cataclysmic variables and even main sequence stars. The main sequence turn-off is clearly visible and the main sequence stars form a prominent track that extends at least two magnitudes below the main sequence turn-off. We compare and discuss the radial distribution of the various stellar populations that show up in the FUV. We search for variability amongst our FUV sources and tentatively classify our variable candidates based on an analysis of the UV colours and variability properties. We find that RR Lyraes, Cepheids, and SX Phoenicis exhibit massive variability amplitudes in this waveband (several mags).


2004 ◽  
Vol 193 ◽  
pp. 113-123
Author(s):  
M. Catelan

AbstractI point out that the Oosterhoff dichotomy for globular cluster and field RR Lyrae stars may place the strongest constraints so far on the number of dwarf spheroidal-like protogalactic fragments that may have contributed to the formation of the Galactic halo. The first calibration of the RR Lyrae period-luminosity relation in I, J, H, K taking evolutionary effects into account is provided. Problems in the interpretation of RR Lyrae light curves and evolutionary properties are briefly reviewed.


Sign in / Sign up

Export Citation Format

Share Document