scholarly journals Pal 13: its moderately extended low-density halo and its accretion history

2020 ◽  
Vol 635 ◽  
pp. A93 ◽  
Author(s):  
Andrés E. Piatti ◽  
José G. Fernández-Trincado

We present results based on Dark Energy Camera Legacy Survey (DECaLS) DR8 astrometric and photometric data sets of the Milky Way globular cluster Pal 13. Because of its relatively small size and mass, there is not yet a general consensus on the existence of extra-tidal structures surrounding it. While some previous results suggest the absence of such features, others show that the cluster is under the effects of tidal stripping. We have built a cluster stellar density map from DECaLS g, r magnitudes – previously corrected for interstellar reddening – of stars placed along the cluster main sequence in the color-magnitude diagram. The resulting density map shows nearly smooth contours around Pal 13 out to approximately 1.6 t the most recent estimate of its Jacobi radius, which was derived whilst taking into account the variation along its orbital motion. This outcome favors the presence of stars escaping the cluster, a phenomenon frequently seen in globular clusters that have crossed the Milky Way disk a comparably large number of times. Particularly, the orbital high eccentricity and large inclination angle of this accreted globular cluster could have been responsible for the relatively large amount of lost cluster mass.

2021 ◽  
Vol 646 ◽  
pp. A176
Author(s):  
Andrés E. Piatti ◽  
Martín F. Mestre ◽  
Julio A. Carballo-Bello ◽  
Daniel D. Carpintero ◽  
Camila Navarrete ◽  
...  

We study the outer regions of the Milky Way globular cluster NGC 6981 based on publicly available BV photometry and new Dark Energy Camera (DECam) observations, both of which reach nearly 4 mag below the cluster main sequence (MS) turnoff. While the BV data sets reveal the present of extra-tidal features around the cluster, the much larger field of view of the DECam observations allowed us to identify some other tidal features, which extend from the cluster toward the opposite direction to the Milky Way center. Such structural features of clusters arise from stellar density maps built using MS stars, following a cleaning of the cluster color-magnitude diagram to remove the contamination of field stars. We also performed N-body simulations in order to help us to understand the spatial distribution of the extra-tidal debris. The outcomes reveal the presence of long trailing and leading tails that are mostly parallel to the direction of the cluster velocity vector. We find that the cluster loses most of its mass by tidal disruption during its perigalactic passages, each of which lasted nearly 20 Myr. Hence, a decrease in the density of escaping stars near the cluster is expected from our N-body simulations, which, in turn, means that stronger extra-tidal features could be found by exploring much larger areas around NGC 6891.


2019 ◽  
Vol 490 (2) ◽  
pp. 1498-1508
Author(s):  
Nicolas Longeard ◽  
Nicolas Martin ◽  
Rodrigo A Ibata ◽  
Michelle L M Collins ◽  
Benjamin P M Laevens ◽  
...  

ABSTRACT We present a photometric and spectroscopic study of the Milky Way satellite Laevens 3. Using MegaCam/Canada–France–Hawaii Telescope $g$ and $i$ photometry and Keck II/DEIMOS multi-object spectroscopy, we refine the structural and stellar properties of the system. The Laevens 3 colour–magnitude diagram shows that it is quite metal-poor, old ($13.0 \pm 1.0$ Gyr), and at a distance of $61.4 \pm 1.0$ kpc, partly based on two RR Lyrae stars. The system is faint ($M_V = -2.8^{+0.2}_{-0.3}$ mag) and compact ($r_h = 11.4 \pm 1.0$ pc). From the spectroscopy, we constrain the systemic metallicity (${\rm [Fe/H]}_\mathrm{spectro} = -1.8 \pm 0.1$ dex) but the metallicity and velocity dispersions are both unresolved. Using Gaia DR2, we infer a mean proper motion of $(\mu _\alpha ^*,\mu _\delta)=(0.51 \pm 0.28,-0.83 \pm 0.27)$ mas yr−1, which, combined with the system’s radial velocity ($\langle v_r\rangle = -70.2 \pm 0.5 {\rm \, km \,\, s^{-1}}$), translates into a halo orbit with a pericenter and apocenter of $40.7 ^{+5.6}_{-14.7}$ and $85.6^{+17.2}_{-5.9}$ kpc, respectively. Overall, Laevens 3 shares the typical properties of the Milky Way’s outer halo globular clusters. Furthermore, we find that this system shows signs of mass segregation that strengthens our conclusion that Laevens 3 is a globular cluster.


2020 ◽  
Vol 494 (1) ◽  
pp. 983-1001 ◽  
Author(s):  
Alexander H Riley ◽  
Louis E Strigari

ABSTRACT There is increasing evidence that a substantial fraction of Milky Way satellite galaxies align in a rotationally supported plane of satellites, a rare configuration in cosmological simulations of galaxy formation. It has been suggested that other Milky Way substructures (namely young halo globular clusters and stellar/gaseous streams) similarly tend to align with this plane, accordingly dubbed the Vast Polar Structure (VPOS). Using systemic proper motions inferred from Gaia data, we find that globular cluster orbital poles are not clustered in the VPOS direction, though the population with the highest VPOS membership fraction is the young halo clusters (∼30 per cent). We additionally provide a current census of stellar streams, including new streams discovered using the Dark Energy Survey and Gaia data sets, and find that stellar stream normals are also not clustered in the direction of the VPOS normal. We also find that, based on orbit modelling, there is a likely association between NGC 3201 and the Gjöll stellar stream and that, based on its orbital pole, NGC 4147 is likely not a Sagittarius globular cluster. That the Milky Way’s accreted globular clusters and streams do not align in the same planar configuration as its satellites suggests that the plane of satellites is either a particularly stable orbital configuration or a population of recently accreted satellites. Neither of these explanations is particularly likely in light of other recent studies, leaving the plane of satellites problem as one of the more consequential open problems in galaxy formation and cosmology.


2015 ◽  
Vol 11 (S317) ◽  
pp. 140-144
Author(s):  
Andreas H.W. Küpper ◽  
Eduardo Balbinot ◽  
Ana Bonaca ◽  
Kathryn V. Johnston ◽  
David W. Hogg ◽  
...  

AbstractTidal streams of globular clusters are ideal tracers of the Galactic gravitational potential. Compared to the few known, complex and diffuse dwarf-galaxy streams, they are kinematically cold, have thin morphologies and are abundant in the halo of the Milky Way. Their coldness and thinness in combination with potential epicyclic substructure in the vicinity of the stream progenitor turns them into high-precision scales. With the example of Palomar 5, we demonstrate how modeling of a globular cluster stream allows us to simultaneously measure the properties of the disrupting globular cluster, its orbital motion, and the gravitational potential of the Milky Way.


2020 ◽  
Vol 643 ◽  
pp. A15
Author(s):  
Andrés E. Piatti ◽  
Julio A. Carballo-Bello ◽  
Marcelo D. Mora ◽  
Carolina Cenzano ◽  
Camila Navarrete ◽  
...  

We present results on the extra-tidal features of the Milky Way globular cluster NGC 7099, using deep gr photometry obtained with the Dark Energy Camera (DECam). We reached nearly 6 mag below the cluster’s main sequence (MS) turnoff, so that we dealt with the most suitable candidates to trace any stellar structure located beyond the cluster tidal radius. From star-by-star reddening corrected color-magnitude diagrams (CMDs), we defined four adjacent strips along the MS, for which we built the respective stellar density maps, once the contamination by field stars was properly removed. The resulting, cleaned, field star stellar density maps show a short tidal tail and some scattered debris. Such extra-tidal features are hardly detected when much shallower Gaia DR2 data sets are used and the same CMD field star cleaning procedure is applied. Indeed, by using 2.5 mag below the MS turnoff of the cluster as the faintest limit (G <  20.5 mag), cluster members turned out to be distributed within the cluster’s tidal radius, and some hints for field star density variations are found across a circle of radius 3.5° centered on the cluster and with similar CMD features as cluster stars. The proper motion distribution of these stars is distinguishable from that of the cluster, with some superposition, which resembles that of stars located beyond 3.5° from the cluster center.


2015 ◽  
Vol 12 (S316) ◽  
pp. 275-280 ◽  
Author(s):  
A. P. Milone

AbstractA large number of intermediate-age (~1-2-Gyr old) globular clusters (GCs) in the Large and the Small Magellanic Cloud (MC) exhibit either bimodal or extended main-sequence (MS) turn off and dual red clump (RC). Moreover, recent papers have shown that the MS of the young clusters NGC 1844 and NGC 1856 is either broadened or split. These features of the color-magnitude diagram (CMD) are not consistent with a single isochrone and suggest that star clusters in MCs have experienced a prolonged star formation, in close analogy with Milky-Way GCs with multiple stellar populations. As an alternative, stellar rotation or interacting binaries can be responsible of the CMD morphology. In the following I will summarize the observational scenario and provide constraints on the nature of the complex CMD of young and intermediate-age MC clusters from our ongoing photometric survey with the Hubble Space Telescope (HST).


2009 ◽  
Vol 5 (S268) ◽  
pp. 187-188
Author(s):  
Donatella Romano ◽  
M. Tosi ◽  
M. Cignoni ◽  
F. Matteucci ◽  
E. Pancino ◽  
...  

AbstractIn this contribution we discuss the origin of the extreme helium-rich stars which inhabit the blue main sequence (bMS) of the Galactic globular cluster Omega Centauri. In a scenario where the cluster is the surviving remnant of a dwarf galaxy ingested by the Milky Way many Gyr ago, the peculiar chemical composition of the bMS stars can be naturally explained by considering the effects of strong differential galactic winds, which develop owing to multiple supernova explosions in a shallow potential well.


1988 ◽  
Vol 126 ◽  
pp. 37-48
Author(s):  
Robert Zinn

Harlow Shapley (1918) used the positions of globular clusters in space to determine the dimensions of our Galaxy. His conclusion that the Sun does not lie near the center of the Galaxy is widely recognized as one of the most important astronomical discoveries of this century. Nearly as important, but much less publicized, was his realization that, unlike stars, open clusters, HII regions and planetary nebulae, globular clusters are not concentrated near the plane of the Milky Way. His data showed that the globular clusters are distributed over very large distances from the galactic plane and the galactic center. Ever since this discovery that the Galaxy has a vast halo containing globular clusters, it has been clear that these clusters are key objects for probing the evolution of the Galaxy. Later work, which showed that globular clusters are very old and, on average, very metal poor, underscored their importance. In the spirit of this research, which started with Shapley's, this review discusses the characteristics of the globular cluster system that have the most bearing on the evolution of the Galaxy.


1983 ◽  
Vol 100 ◽  
pp. 359-364
Author(s):  
K. C. Freeman

In the Milky Way, the globular clusters are all very old, and we are accustomed to think of them as the oldest objects in the Galaxy. The clusters cover a wide range of chemical abundance, from near solar down to about [Fe/H] ⋍ −2.3. However there are field stars with abundances significantly lower than −2.3 (eg Bond, 1980); this implies that the clusters formed during the active phase of chemical enrichment, with cluster formation beginning at a time when the enrichment processes were already well under way.


1973 ◽  
Vol 21 ◽  
pp. 113-119 ◽  
Author(s):  
M. V. Norris

NGC 1466 (α1950 = 3h44.m6, δ1950= -71°45’) is a globular cluster which appears to be situated between the two Magellanic Clouds. Previous estimates (Gascoigne, 1966) put it at roughly the same distance from us as the LMC, so it is regarded as a member of the Cloud system. It is globular in appearance, and its colour-magnitude diagram confirms this classification. It has a fairly well-developed horizontal branch, and was found by Wesselink (1970) to be quite rich in variables. The metallicity index, Q, (van den Bergh, 1967) has a value of -0.36 for NGC 1466 (Andrews and Lloyd Evans, 1971). This would rank it with M5 and NGC 6171 as a cluster of intermediate metal content. This comparison is consistent with the value of Δ V for the cluster, which, at 2.m6, is representative of the Δ V values of globular clusters of intermediate metal abundance in the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document