scholarly journals Constraining the orientation of the spin axes of extrasolar minor bodies 1I/2017 U1 (‘Oumuamua) and 2I/Borisov

2020 ◽  
Vol 643 ◽  
pp. A18
Author(s):  
C. de la Fuente Marcos ◽  
R. de la Fuente Marcos

Context. The orientation of the spin axis of a comet is defined by the values of its equatorial obliquity and its cometocentric longitude of the Sun at perihelion. These parameters can be computed from the components of the nongravitational force caused by outgassing if the cometary activity is well characterized. The trajectories of known interstellar bodies passing through the Solar System show nongravitational accelerations. Aims. The spin-axis orientation of 1I/2017 U1 (‘Oumuamua) remains to be determined; for 2I/Borisov, the already released results are mutually exclusive. In both cases, the values of the components of the nongravitational force are relatively well constrained. Here, we investigate – within the framework of the forced precession model of a nonspherical cometary nucleus – the orientation of the spin axes of ‘Oumuamua and 2I/Borisov using public orbit determinations that consider outgassing. Methods. We applied a Monte Carlo simulation using the covariance matrix method together with Monte Carlo random search techniques to compute the distributions of equatorial obliquities and cometocentric longitudes of the Sun at perihelion of ‘Oumuamua and 2I/Borisov from the values of the nongravitational parameters. Results. We find that the equatorial obliquity of ‘Oumuamua could be about 93°, if it has a very prolate (fusiform) shape, or close to 16°, if it is very oblate (disk-like). Different orbit determinations of 2I/Borisov gave obliquity values of 59° and 90°. The distributions of cometocentric longitudes were in general multimodal. Conclusions. Our calculations suggest that the most probable spin-axis direction of ‘Oumuamua in equatorial coordinates is (280°, +46°) if very prolate or (312°, −50°) if very oblate. Our analysis favors a prolate shape. For the orbit determinations of 2I/Borisov used here, we find most probable poles pointing near (275°, +65°) and (231°, +30°), respectively. Although our analysis favors an oblate shape for 2I/Borisov, a prolate one cannot be ruled out.

1999 ◽  
Vol 173 ◽  
pp. 381-387
Author(s):  
M. Królikowska ◽  
G. Sitarski ◽  
S. Szutowicz

AbstractThe nongravitational motion of five “erratic” short-period comets is studied on the basis of published astrometric observations. We present the precession models which successfully link all the observed apparitions of the comets: 21P/Giacobini-Zinner, 31P/Schwassmann-Wachmann 2, 32P/Comas Solá, 37P/Forbes, and 43P/Wolf-Harrington. We used the Sekanina's forced precession model of the rotating cometary nucleus to include the nongravitational terms into equations of the comet's motion. Values of six basic parameters (four connected with the rotating comet nucleus and two describing the precession of spin-axis of the nucleus) have been determined along the orbital elements from positional observations of the comets. The solutions were derived with additional assumptions which introduce instantaneous changes of modulus of reactive force,Aand of maximum of cometary activity with respect to perihelion time. The present precession models impose some contraints on sizes and rotational periods of cometary nuclei. According to our solutions the nucleus of 21P/Giacobini-Zinner with oblateness along the spin-axis of about 0.32 (equatorial to polar radius of 1.46) is the most oblate among five investigated comets.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012067
Author(s):  
Q Mu ◽  
E G Kablukova ◽  
B A Kargin ◽  
S M Prigarin

Abstract In this paper, we try to answer the question: how the multiple scattering, the sun elevation, shape and orientation of ice crystals in the cirrus clouds affect a halo pattern. To study the radiation transfer in optically anisotropic clouds, we have developed the software based on Monte Carlo method and ray tracing. In addition to halos, this software enables one to simulate “anti-halos”, which above the cloud layer can be seen by observers. We present the visualization of halos and anti-halos generated by the cirrus clouds for different shapes and orientations of ice crystals.


1999 ◽  
Vol 173 ◽  
pp. 259-264
Author(s):  
S. Szutowicz

AbstractDiscovered in 1973, 71P/Clark had made only five revolutions around the Sun. The motion of the comet has been subjected to a constant small deceleration between 1973 and 1989 and then a dramatic jump in the nongravitational perturbations occured. To explain the discontinuity in the comet's nongravitational effects a change in the surface distribution of active areas and a nucleus orientation was considered. The model of discrete source of out gassing was employed in the orbital calculations. From numerical fitting of the model parameters to positional observations the spin-axis orientation, localizations and outgassing areas of two active regions have been derived and the orbit successfully improved. The nucleus radius was estimated as equal to 0.76 km.


Author(s):  
Dong Hwan Choi ◽  
Hong Hee Yoo

The operation error of a robot manipulator that occurs inevitably due to the manufacturing tolerance needs to be controlled within a certain range to achieve proper performance. The reduction of manufacturing tolerance, however, increases the manufacturing cost in return. Therefore, system design engineers try to solve the problem of maximizing the tolerance to reduce the manufacturing cost while minimizing the operation error to satisfy the performance requirement. In the present study, a revolute joint model considering the variation of joint axis orientation due to joint clearance is employed to perform a tolerance analysis of the robot manipulator operation. This paper presents a hybrid method which employs the sensitivity-based analytic method and the single Monte-Carlo simulation. The proposed method provides rapid implementation and the accurate statistical properties using the only single integration or single iteration for one sample set, whereas the Monte-Carlo method necessitates integrations as the number of samples and cases. Significant reduction of computing time can be achieved with the proposed method. The present method is especially effective if sensitivity information is hard to be obtained for the analysis.


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Sign in / Sign up

Export Citation Format

Share Document