scholarly journals Mineral snowflakes on exoplanets and brown dwarfs

2020 ◽  
Vol 639 ◽  
pp. A107 ◽  
Author(s):  
D. Samra ◽  
Ch. Helling ◽  
M. Min

Context. Exoplanet atmosphere characterisation has become an important tool in understanding exoplanet formation, evolution, and it also is a window into potential habitability. However, clouds remain a key challenge for characterisation: upcoming space telescopes (e.g. the James Webb Space Telescope, JWST, and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey) and ground-based high-resolution spectrographs (e.g. the next-generation CRyogenic high-resolution InfraRed Echelle Spectrograph) will produce data requiring detailed understanding of cloud formation and cloud effects for a variety of exoplanets and brown dwarfs. Aims. We aim to understand how the micro-porosity of cloud particles affects the cloud structure, particle size, and material composition on exoplanets and brown dwarfs. We further examine the spectroscopic effects of micro-porous particles, the particle size distribution, and non-spherical cloud particles. Methods. We expanded our kinetic non-equilibrium cloud formation model to study the effect of micro-porosity on the cloud structure using prescribed 1D (Tgas–pgas) profiles from the DRIFT-PHOENIX model atmosphere grid. We applied the effective medium theory and the Mie theory to model the spectroscopic properties of cloud particles with micro-porosity and a derived particle size distribution. In addition, we used a statistical distribution of hollow spheres to represent the effects of non-spherical cloud particles. Results. Highly micro-porous cloud particles (90% vacuum) have a larger surface area, enabling efficient bulk growth higher in the atmosphere than for compact particles. Increases in single scattering albedo and cross-sectional area for these mineral snowflakes cause the cloud deck to become optically thin only at a wavelength of ~100 μm instead of at the ~20 μm for compact cloud particles. A significant enhancement in albedo is also seen when cloud particles occur with a locally changing Gaussian size distribution. Non-spherical particles increase the opacity of silicate spectral features, which further increases the wavelength at which the clouds become optically thin. Conclusions. Retrievals of cloud properties, particularly particle size and mass of clouds, are biased by the assumption of compact spherical particles. The JWST mid-infrared instrument will be sensitive to signatures of micro-porous and non-spherical cloud particles based on the wavelength at which clouds are optically thin. Details of spectral features are also dependent on particle shape, and greater care must be taken in modelling clouds as observational data improves.

2005 ◽  
Vol 62 (12) ◽  
pp. 4206-4221 ◽  
Author(s):  
Wanda Szyrmer ◽  
Stéphane Laroche ◽  
Isztar Zawadzki

Abstract The authors address the problem of optimization of the microphysical information extracted from a simulation system composed of high-resolution numerical models and multiparameter radar data or other available measurements. As a tool in the exploration of this question, a bulk microphysical scheme based on the general approach of scaling normalization of particle size distribution (PSD) is proposed. This approach does not rely on a particular functional form imposed on the PSD and naturally leads to power-law relationships between the PSD moments providing an accurate and compact PSD representation. To take into account the possible evolution of the shape/curvature of the distribution, ignored within standard one- and two-moment microphysical schemes, a new three-moment scheme based on the two-moment scaling normalization is proposed. The methodology of the moment retrieval included in the three-moment scheme can also be useful as a retrieval algorithm combining different remote sensing observations. The developed bulk microphysical scheme presents a unified formulation for microphysical parameterization using one, two, or three independent moments, suitable in the context of data assimilation. The effectiveness of the scheme with different combinations of independent moments is evaluated by comparison with a very high resolution spectral model within a 1D framework on representative microphysical processes: rain sedimentation and evaporation.


2007 ◽  
Vol 534-536 ◽  
pp. 1621-1624
Author(s):  
Yuto Amano ◽  
Takashi Itoh ◽  
Hoshiaki Terao ◽  
Naoyuki Kanetake

For precise property control of sintered products, it is important to know the powder characteristics, especially the packing density of the powder. In a previous work, we developed a packing simulation program that could make a packed bed of spherical particles having particle size distribution. In order to predict the packing density of the actual powder that consisted of nonspherical particles, we combined the packing simulation with a particle shape analysis. We investigated the influence of the particle size distribution of the powder on the packing density by executing the packing simulation based on particle size distributions of the actual milled chromium powders. In addition, the influence of the particle shape of the actual powder on the packing density was quantitatively analyzed. A prediction of the packing density of the milled powder was attempted with an analytical expression between the particle shape of the powder and the packing simulation. The predicted packing densities were in good agreement with the actual data.


2021 ◽  
Vol 2 ◽  
Author(s):  
Marcos Jofree Duran ◽  
Jasmine Kannampuzha-Francis ◽  
Daryl Nydam ◽  
Erica Behling-Kelly

Plasma lipoproteins play critical roles in energy metabolism and inflammation. Concentrations of high-density lipoproteins (HDL) are linked to reproductive outcomes and milk yields in dairy cattle. Low-density lipoproteins (LDL), which are enzymatically formed in the blood from very low-density lipoproteins (VLDL) following secretion by the liver, have been used as a surrogate marker of liver function due to the rapid influx of circulating VLDL into the lactating mammary gland. In humans, the composition of plasma lipoproteins is reflected in lipoprotein particle size distribution, and both of these parameters are highly predictive of disease development and related health outcomes. Bovine HDL are overall larger, less dense particles compared to human HDL. Lipoprotein particle size distribution in both health and disease is understudied in the bovine. We hypothesize that a more detailed analysis of lipoproteins could hold diagnostic and/or prognostic value in the study of dairy cattle health and production. In this study, we took the first steps in this characterization and used a high-resolution polyacrylamide gel electrophoretic assay to better define LDL and HDL at the subfraction level in Holstein cows at different stages of lactation. We extensively characterized the lipoprotein particle size distribution in healthy lactating dairy cattle. We identified subfractions of LDL that were prominent only in the dry period and subfractions of HDL that were highest in cows during mid-lactation. Use of this method could be informative in the study of multiple herds and management strategies, including longitudinal evaluation of animals and production parameters.


1984 ◽  
Vol 143 ◽  
pp. 387-411 ◽  
Author(s):  
I. A. Valioulis ◽  
E. J. List ◽  
H. J. Pearson

Hunt (1982) and Friedlander (1960a, b) used dimensional analysis to derive expressions for the steady-state particle-size distribution in aerosols and hydrosols. Their results were supported by the Monte Carlo simulation of a non-interacting coagulating population of suspended spherical particles developed by Pearson, Valioulis & List (1984). Here the realism of the Monte Carlo simulation is improved by accounting for the modification to the coagulation rate caused by van der Waals', electrostatic and hydrodynamic forces acting between particles. The results indicate that the major hypothesis underlying the dimensional reasoning, that is, collisions between particles of similar size are most important in determining the shape of the particle size distribution, is valid only for shear-induced coagulation. It is shown that dimensional analysis cannot, in general, be used to predict equilibrium particle-size distributions, mainly because of the strong dependence of the interparticle force on the absolute and relative size of the interacting particles.


2009 ◽  
Vol 26 (12) ◽  
pp. 2531-2548 ◽  
Author(s):  
J. G. DeVore ◽  
A. T. Stair ◽  
A. LePage ◽  
D. Rall ◽  
J. Atkinson ◽  
...  

Abstract This paper describes a newly designed Sun and Aureole Measurement (SAM) aureolegraph and the first results obtained with this instrument. SAM measurements of solar aureoles produced by cirrus and cumulus clouds were taken at the Atmospheric Radiation Measurement Program (ARM) Central Facility in Oklahoma during field experiments conducted in June 2007 and compared with simultaneous measurements from a variety of other ground-based instruments. A theoretical relationship between the slope of the aureole profile and the size distribution of spherical cloud particles is based on approximating scattering as due solely to diffraction, which in turn is approximated using a rectangle function. When the particle size distribution is expressed as a power-law function of radius, the aureole radiance as a function of angle from the center of the solar disk also follows a power law, with the sum of the two powers being −5. This result also holds if diffraction is modeled with an Airy function. The diffraction approximation is applied to SAM measurements with optical depths ≲2 to derive the effective radii of cloud particles and particle size distributions between ∼2.5 and ∼25 μm. The SAM results yielded information on cloud properties complementary to that obtained with ARM Central Facility instrumentation. A network of automated SAM units [similar to the Aerosol Robotic Network (AERONET) system] would provide a practical means to gain fundamental new information on the global statistical properties of thin (optical depth ≲ 10) clouds, thereby providing unique information on the effects of such clouds upon the earth’s energy budget.


1968 ◽  
Vol 12 ◽  
pp. 87-96
Author(s):  
R. W. Gould ◽  
S. R. Bates

AbstractIt has been recently shown that particle size distributions can be determined from small angle x-ray scattering data. Size distributions have previously been measured in aluminum-zinc and aluminum-silver alloys containing spherical Guinier-Preston zones. Inorder to obtain the size distribution it is only necessary to calculate the Guinier radius and the Porod radius.Dispersion hardened nickel alloys containing small spherical particles of thoria appear to be amenable to this type of analysis. A nickel-20% chromium-2% ThO2 alloy was selected for this study. The particle size distribution obtained by small angle x-ray scattering is compared with the transmission electron microscopy results found in the literature.


1995 ◽  
Vol 398 ◽  
Author(s):  
Juliana M. Blaser ◽  
Christine Caragianis-Broadbridge ◽  
Barbara L. Walden ◽  
David C. Paine

ABSTRACTIn this study, Si1-xGexO2 was produced by hydrothermal oxidation of Si1-xGex alloys at temperatures of 450–500°C and pressures of 30–40 MPa. The resulting Si1-xGexO2 samples were annealed in forming gas (85/15:N2/H2) and the precipitation and growth of Ge crystallites as a function of oxidation and annealing conditions were investigated using FTIR, Raman spectroscopy, XPS, AFM and high resolution SEM. The particle size distribution through the oxide thickness is accounted for by consideration of the incorporation of hydroxyl groups in the amorphous oxide network and their effect on the rate of diffusion of Ge in the amorphous structure during H2 annealing.


Sign in / Sign up

Export Citation Format

Share Document