A Study of the Effect of Oxide Structure on the Synthesis of Nanocrystalline Ge from Si1-xGexO2

1995 ◽  
Vol 398 ◽  
Author(s):  
Juliana M. Blaser ◽  
Christine Caragianis-Broadbridge ◽  
Barbara L. Walden ◽  
David C. Paine

ABSTRACTIn this study, Si1-xGexO2 was produced by hydrothermal oxidation of Si1-xGex alloys at temperatures of 450–500°C and pressures of 30–40 MPa. The resulting Si1-xGexO2 samples were annealed in forming gas (85/15:N2/H2) and the precipitation and growth of Ge crystallites as a function of oxidation and annealing conditions were investigated using FTIR, Raman spectroscopy, XPS, AFM and high resolution SEM. The particle size distribution through the oxide thickness is accounted for by consideration of the incorporation of hydroxyl groups in the amorphous oxide network and their effect on the rate of diffusion of Ge in the amorphous structure during H2 annealing.

2005 ◽  
Vol 62 (12) ◽  
pp. 4206-4221 ◽  
Author(s):  
Wanda Szyrmer ◽  
Stéphane Laroche ◽  
Isztar Zawadzki

Abstract The authors address the problem of optimization of the microphysical information extracted from a simulation system composed of high-resolution numerical models and multiparameter radar data or other available measurements. As a tool in the exploration of this question, a bulk microphysical scheme based on the general approach of scaling normalization of particle size distribution (PSD) is proposed. This approach does not rely on a particular functional form imposed on the PSD and naturally leads to power-law relationships between the PSD moments providing an accurate and compact PSD representation. To take into account the possible evolution of the shape/curvature of the distribution, ignored within standard one- and two-moment microphysical schemes, a new three-moment scheme based on the two-moment scaling normalization is proposed. The methodology of the moment retrieval included in the three-moment scheme can also be useful as a retrieval algorithm combining different remote sensing observations. The developed bulk microphysical scheme presents a unified formulation for microphysical parameterization using one, two, or three independent moments, suitable in the context of data assimilation. The effectiveness of the scheme with different combinations of independent moments is evaluated by comparison with a very high resolution spectral model within a 1D framework on representative microphysical processes: rain sedimentation and evaporation.


2021 ◽  
Vol 2 ◽  
Author(s):  
Marcos Jofree Duran ◽  
Jasmine Kannampuzha-Francis ◽  
Daryl Nydam ◽  
Erica Behling-Kelly

Plasma lipoproteins play critical roles in energy metabolism and inflammation. Concentrations of high-density lipoproteins (HDL) are linked to reproductive outcomes and milk yields in dairy cattle. Low-density lipoproteins (LDL), which are enzymatically formed in the blood from very low-density lipoproteins (VLDL) following secretion by the liver, have been used as a surrogate marker of liver function due to the rapid influx of circulating VLDL into the lactating mammary gland. In humans, the composition of plasma lipoproteins is reflected in lipoprotein particle size distribution, and both of these parameters are highly predictive of disease development and related health outcomes. Bovine HDL are overall larger, less dense particles compared to human HDL. Lipoprotein particle size distribution in both health and disease is understudied in the bovine. We hypothesize that a more detailed analysis of lipoproteins could hold diagnostic and/or prognostic value in the study of dairy cattle health and production. In this study, we took the first steps in this characterization and used a high-resolution polyacrylamide gel electrophoretic assay to better define LDL and HDL at the subfraction level in Holstein cows at different stages of lactation. We extensively characterized the lipoprotein particle size distribution in healthy lactating dairy cattle. We identified subfractions of LDL that were prominent only in the dry period and subfractions of HDL that were highest in cows during mid-lactation. Use of this method could be informative in the study of multiple herds and management strategies, including longitudinal evaluation of animals and production parameters.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Eddy Heraldy ◽  
Khoirina Dwi Nugrahaningtyas ◽  
Heriyanto Heriyanto

<p>The study of calcination treatment at 450°C on Ca-Mg-Al-hydrotalcite from brine water has been investigated. Characterization by XRD shows that Ca-Mg-Al hydrotalcite compound has found hydrotalcite phase and another phase such as Mg(OH)<sub>2</sub>, Al(OH)<sub>3</sub> and CaCO<sub>3</sub>. These results are confirmed by the presence of hydroxyl groups, M-O and M-OH groups (M is Mg, Ca and Al) at wavenumber region around 3464.35 cm<sup>-1</sup>, 447.50 cm<sup>-1</sup> and 531.41 cm<sup>-1</sup>. The calcination effect on Ca-Mg-Al hydrotalcite compounds at 450ºC being led to changes in structure become an metal oxide such as MgO, CaO, Al<sub>2</sub>O<sub>3</sub>, MgAl<sub>2</sub>O<sub>4</sub> and CaCO<sub>3</sub>. These results are confirmed from decreasing on the absorption peak of M-OH group at wavenumbers region around 531.41 cm<sup>-1</sup> and 786.99 cm<sup>-1</sup> and widening of the absorption region at 500-900 cm<sup>-1</sup>. Consequently, the calcination treatment successfully increased the surface area of Ca-Mg-Al hydrotalcite compounds from 97.4 m<sup>2</sup>/g to 156.826 m<sup>2</sup>/g. Morphology of Ca-Mg-Al hydrotalcite changes the shape from a big to be small shape and the particle size distribution of 0-0.25 μm into 0-1 μm. Thermal analysis showed changes in the structure of hydrotalcite into oxide begins at a temperature of 265°C and started to become oxide completely after the temperature reaches 428°C.</p>


2020 ◽  
Vol 639 ◽  
pp. A107 ◽  
Author(s):  
D. Samra ◽  
Ch. Helling ◽  
M. Min

Context. Exoplanet atmosphere characterisation has become an important tool in understanding exoplanet formation, evolution, and it also is a window into potential habitability. However, clouds remain a key challenge for characterisation: upcoming space telescopes (e.g. the James Webb Space Telescope, JWST, and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey) and ground-based high-resolution spectrographs (e.g. the next-generation CRyogenic high-resolution InfraRed Echelle Spectrograph) will produce data requiring detailed understanding of cloud formation and cloud effects for a variety of exoplanets and brown dwarfs. Aims. We aim to understand how the micro-porosity of cloud particles affects the cloud structure, particle size, and material composition on exoplanets and brown dwarfs. We further examine the spectroscopic effects of micro-porous particles, the particle size distribution, and non-spherical cloud particles. Methods. We expanded our kinetic non-equilibrium cloud formation model to study the effect of micro-porosity on the cloud structure using prescribed 1D (Tgas–pgas) profiles from the DRIFT-PHOENIX model atmosphere grid. We applied the effective medium theory and the Mie theory to model the spectroscopic properties of cloud particles with micro-porosity and a derived particle size distribution. In addition, we used a statistical distribution of hollow spheres to represent the effects of non-spherical cloud particles. Results. Highly micro-porous cloud particles (90% vacuum) have a larger surface area, enabling efficient bulk growth higher in the atmosphere than for compact particles. Increases in single scattering albedo and cross-sectional area for these mineral snowflakes cause the cloud deck to become optically thin only at a wavelength of ~100 μm instead of at the ~20 μm for compact cloud particles. A significant enhancement in albedo is also seen when cloud particles occur with a locally changing Gaussian size distribution. Non-spherical particles increase the opacity of silicate spectral features, which further increases the wavelength at which the clouds become optically thin. Conclusions. Retrievals of cloud properties, particularly particle size and mass of clouds, are biased by the assumption of compact spherical particles. The JWST mid-infrared instrument will be sensitive to signatures of micro-porous and non-spherical cloud particles based on the wavelength at which clouds are optically thin. Details of spectral features are also dependent on particle shape, and greater care must be taken in modelling clouds as observational data improves.


2014 ◽  
Vol 27 (15) ◽  
pp. 5907-5928 ◽  
Author(s):  
M. J. Woodage ◽  
S. Woodward

Abstract This work investigates the impacts of mineral dust aerosol on climate using the atmospheric component of the U.K. High-Resolution Global Environmental Model (HiGEM) with an interactive embedded mineral dust scheme. It extends earlier work by Woodage et al. in which direct radiative forcing due to dust was calculated and in which it was reported that the global total dust burden was increased when this was included in the model. Here this result is analyzed further and the regional and global impacts are investigated. It is found that particle size distribution is critically important: In regions where large, more absorbent dust particles are present, burdens are increased because of the enhanced heating aloft, which strengthens convection, whereas, in areas where smaller, more scattering particles dominate, the surface layers are stabilized and dust emissions are decreased. The consequent changes in dust load and particle size distribution when radiative effects are included make the annual mean global forcing more positive at the top of the atmosphere (0.33 versus 0.05 W m−2). Impacts on the West African monsoon are also considered, where Saharan dust brings about a northward shift in the summertime intertropical convergence zone with increased precipitation on its northern side. This contrasts with results from some other studies, but the authors’ findings are supported by recent observational data. They argue that the impacts depend crucially on the size distribution and radiative properties of the dust particles, which are poorly known on a global scale and differ here from those used in other models.


2008 ◽  
Author(s):  
Robert M. Malone ◽  
Gene A. Capelle ◽  
Brian C. Cox ◽  
Brent C. Frogget ◽  
Mike Grover ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1493
Author(s):  
Tara Larsson ◽  
Ulf Olofsson ◽  
Anders Christiansen Erlandsson

The utilisation of internal combustion engines is one of the main causes of particle emissions in urban areas. As the interest for the utilisation of biofuels increases, it is important to understand their effect on particle number emissions. In this paper, the particle size distribution and the particle number emissions from a gasoline-optimised direct-injected spark-ignited (DISI) engine are investigated. The effects of five different biofuel alternatives on these emissions were evaluated and compared to gasoline. The utilisation of the high-resolution, high-temperature ELPI+ enabled undiluted measurements of the particle size distribution down to 6 nm, without extensive cooling of the engine exhaust. Contrary to other studies, the results show that the particle number emissions for the three measured cut-off sizes (23, 10 and 7 nm) increased with the utilisation of oxygenated biofuels. The results indicate that the decreased volatility and energy density of the alcohols has a more significant impact on the particle formation in a DISI engine than the increased oxygen content of these fuels.


Sign in / Sign up

Export Citation Format

Share Document