scholarly journals The GAPS programme at TNG

2020 ◽  
Vol 642 ◽  
pp. A53
Author(s):  
C. Di Maio ◽  
C. Argiroffi ◽  
G. Micela ◽  
S. Benatti ◽  
A. F. Lanza ◽  
...  

Context. Understanding stellar activity in M dwarfs is fundamental to improving our knowledge of the physics of stellar atmospheres and for planet search programmes. High levels of stellar activity (also frequently associated with flare events) can cause additional variations in the stellar emission that contaminate the signal induced by a planet and that need to be corrected. The study of activity indicators in active stars can improve our capability of modelling the signal generated by magnetic activity. Aims. In this work we present measurements of activity indicators at visible wavelength for a star with a high activity level, AD Leonis, observed with HARPS in 2006, and HARPS-N in 2018. Our aim is to understand the behaviour of stellar chromospheres of M stars, studying the more sensitive chromospheric activity indicators. We also focus on characterising their variability and on finding the correlations among these indicators to obtain information on the origin of the magnetic activity in low-mass stars. Methods. We performed a study of the main optical activity indicators (Ca II H&K, Balmer lines, Na I D1,2 doublet, He I D3, and other helium lines) measured for AD Leonis using the data provided by the HARPS-N high-resolution spectrograph at the Telescopio Nazionale Galileo in 2018, and by the HARPS instrument at La Silla observatory in 2006. Spectra were flux-calibrated in units of flux at the stellar surface. We measured excess flux of the selected activity indicators. The correlations between the different activity indicators as well as the temporal evolution of fluxes were analysed. A stellar flare was identified during the 2018 observing run and the Hα, Hβ, He I 4471 Å, and He I 5876 Å lines were analysed in detail by fitting the line profiles with two Gaussian components. Results. We found that the Ca II H&K flux excesses are strongly correlated with each other, but the Ca II H&K doublet is generally less correlated with the other indicators. Moreover, Hα is correlated with Na I doublet and helium lines. Analysing the time variability of flux of the studied lines, we found a higher level of activity of the star during the observations in 2018 than in 2006, while Ca II H&K showed more intense emission on spectra obtained during the observations in 2006. Thanks to a detailed analysis of selected line profiles, we investigated the flare evaluating the mass motion during the event.

2003 ◽  
Vol 211 ◽  
pp. 427-435 ◽  
Author(s):  
Gibor Basri ◽  
Subanjoy Mohanty

One of the triumphs of the last 2 decades has been the establishment of the relation between stellar rotation and magnetic activity in solar-type stars. Rapid rotation produces strong activity, which in turn provides magnetic braking to reduce rotation. A solar-type dynamo cannot operate in fully convective stars, so it is of interest to study mid and late M stars. Hints that a dramatic change occurs in very low-mass stars and substellar objects appeared in 1995. The past 7 years have seen substantial progress on this question, with the conclusion that the rotation-activity connection indeed breaks down. As one goes to the bottom of the main sequence and below, the amount of magnetic activity takes a sudden fall, with a concomitant increase in the spindown times of the objects. We summarize these results, and some theoretical work which helps explain them. We also present some remaining mysteries, such as why very young objects seem excessively active, and flaring in objects with no other signs of magnetic activity.


2015 ◽  
Vol 10 (S314) ◽  
pp. 203-204
Author(s):  
Kristina M. Punzi ◽  
Joel H. Kastner ◽  
David Rodriguez ◽  
David A. Principe ◽  
Laura Vican

AbstractLow-mass, pre-main sequence stars possess intense high-energy radiation fields as a result of their strong stellar magnetic activity. This stellar UV and X-ray radiation may have a profound impact on the lifetimes of protoplanetary disks. We aim to constrain the X-ray-induced photoevaporation rates of protoplanetary disks orbiting low-mass stars by analyzing serendipitous XMM-Newton and Chandra X-ray observations of candidate nearby (D < 100 pc), young (age < 100 Myr) M stars identified in the GALEX Nearby Young-Star Survey (GALNYSS).


2013 ◽  
Vol 8 (S299) ◽  
pp. 64-65
Author(s):  
Julien Rameau ◽  
Gaël Chauvin ◽  
Anne-Marie Lagrange ◽  
Philippe Delorme ◽  
Justine Lannier

AbstractWe present the results of two three-year surveys of young and nearby stars to search for wide orbit giant planets. On the one hand, we focus on early-type and massive, namely β Pictoris analogs. On the other hand, we observe late type and very low mass stars, i.e., M dwarfs. We report individual detections of new planetary mass objects. According to our deep detection performances, we derive the observed frequency of giant planets between these two classes of parent stars. We find frequency between 6 to 12% but we are not able to assess a/no correlation with the host-mass.


2018 ◽  
Vol 620 ◽  
pp. A171 ◽  
Author(s):  
R. Luque ◽  
G. Nowak ◽  
E. Pallé ◽  
D. Kossakowski ◽  
T. Trifonov ◽  
...  

We announce the discovery of two planetary companions orbiting around the low-mass stars Ross 1020 (GJ 3779, M4.0V) and LP 819-052 (GJ 1265, M4.5V). The discovery is based on the analysis of CARMENES radial velocity (RV) observations in the visual channel as part of its survey for exoplanets around M dwarfs. In the case of GJ 1265, CARMENES observations were complemented with publicly available Doppler measurements from HARPS. The datasets reveal two planetary companions, one for each star, that share very similar properties: minimum masses of 8.0 ± 0.5 M⊕ and 7.4 ± 0.5 M⊕ in low-eccentricity orbits with periods of 3.023 ± 0.001 d and 3.651 ± 0.001 d for GJ 3779 b and GJ 1265 b, respectively. The periodic signals around 3 d found in the RV data have no counterpart in any spectral activity indicator. Furthermore, we collected available photometric data for the two host stars, which confirm that the additional Doppler variations found at periods of approximately 95 d can be attributed to the rotation of the stars. The addition of these planets to a mass-period diagram of known planets around M dwarfs suggests a bimodal distribution with a lack of short-period low-mass planets in the range of 2–5 M⊕. It also indicates that super-Earths (>5 M⊕) currently detected by RV and transit techniques around M stars are usually found in systems dominated by a single planet.


2017 ◽  
Vol 600 ◽  
pp. A13 ◽  
Author(s):  
N. Astudillo-Defru ◽  
X. Delfosse ◽  
X. Bonfils ◽  
T. Forveille ◽  
C. Lovis ◽  
...  

Context. Atmospheric magnetic fields in stars with convective envelopes heat stellar chromospheres, and thus increase the observed flux in the Ca ii H and K doublet. Starting with the historical Mount Wilson monitoring program, these two spectral lines have been widely used to trace stellar magnetic activity, and as a proxy for rotation period (Prot) and consequently for stellar age. Monitoring stellar activity has also become essential in filtering out false-positives due to magnetic activity in extra-solar planet surveys. The Ca ii emission is traditionally quantified through the R'HK-index, which compares the chromospheric flux in the doublet to the overall bolometric flux of the star. Much work has been done to characterize this index for FGK-dwarfs, but M dwarfs – the most numerous stars of the Galaxy – were left out of these analyses and no calibration of their Ca ii H and K emission to an R'HK exists to date. Aims. We set out to characterize the magnetic activity of the low- and very-low-mass stars by providing a calibration of the R'HK-index that extends to the realm of M dwarfs, and by evaluating the relationship between R'HK and the rotation period. Methods. We calibrated the bolometric and photospheric factors for M dwarfs to properly transform the S-index (which compares the flux in the Ca ii H and K lines to a close spectral continuum) into the R'HK. We monitored magnetic activity through the Ca ii H and K emission lines in the HARPS M dwarf sample. Results. The R'HK index, like the fractional X-ray luminosity LX/Lbol, shows a saturated correlation with rotation, with saturation setting in around a ten days rotation period. Above that period, slower rotators show weaker Ca ii activity, as expected. Under that period, the R'HK index saturates to approximately 10-4. Stellar mass modulates the Ca ii activity, with R'HK showing a constant basal activity above 0.6 M⊙ and then decreasing with mass between 0.6 M⊙ and the fully-convective limit of 0.35 M⊙. Short-term variability of the activity correlates with its mean level and stars with higher R'HK indexes show larger R'HK variability, as previously observed for earlier spectral types.


2003 ◽  
Vol 211 ◽  
pp. 119-122
Author(s):  
Frederick M. Walter ◽  
William H. Sherry ◽  
Scott J. Wolk

VRI images within the belt of Orion and the Ori OB1a association reveal a pre-main sequence locus extending to below our completeness limit of about V=21. We report here on followup JHK imaging and optical and near–IR spectroscopy of the faintest and reddest of the PMS candidates. We find that they are unreddened mid-to-late M “stars” which fall on a few million year isochrone. Masses are largely substellar, reaching as low as about 0.02 M⊙ (20 Jovian masses). The space density of the substellar objects is high.


2012 ◽  
Vol 8 (S294) ◽  
pp. 471-475
Author(s):  
I. Boisse ◽  
M. Oshagh ◽  
C. Lovis ◽  
N. C. Santos ◽  
X. Dumusque ◽  
...  

AbstractMost of the exoplanet science is dependent on the stellar knowledge. One of them that has to be understood is the magnetic activity when we search for planets with radial velocity or photometry measurements. The main shape of stellar activity and spots properties have to be understood, for example, to choose the best targets to search for low-mass planets in the habitable zone or to derive the accurate parameters of a planetary system. With that aim, we show in this presentation how these studies lead to give clues on spots latitudes and on the long term variation of stellar activity. The properties of magnetic activity on the low rotators solar-type stars are not easily reachable by other techniques (spectropolarimetry or Doppler imaging) and these studies should be used to constrain theories of stellar dynamo.


2009 ◽  
Vol 5 (H15) ◽  
pp. 756-756 ◽  
Author(s):  
France Allard ◽  
Bernd Freytag

AbstractThe atmospheres of Brown Dwarfs (BDs) are the site of molecular opacities and cloud formation, and control their cooling rate, radius and brightness evolution. Brown dwarfs evolve from stellar-like properties (magnetic activity, spots, flares, mass loss) to planet-like properties (electron degeneracy of the interior, cloud formation, dynamical molecular transport) while retaining, due to their fully convective interior, larger rotational velocities (≤ 30 km/s i.e. P < 4 hrs versus 11 hrs for Jupiter). Model atmospheres treating all this complexity are therefore essential to understand the evolution properties, and to interpret the observations of these objects. While the pure gas-phase based NextGen model atmospheres (Allard et al. 1997, Hauschildt et al. 1999) have allowed the understanding of the several populations of Very Low Mass Stars (VLMs), the AMES-Dusty models (Allard et al. 2001) based on equilibrium chemistry have reproduced some near-IR photometric properties of M and L-type brown dwarfs, and played a key role in the determination of the mass of brown dwarfs and Planetary Mass Objects (PMOs) in the eld and in young stellar clusters. In this paper, we present a new model atmosphere grid for VLMs, BDs, PMOs named BT-Settl, which includes a cloud model and dynamical molecular transport based on mixing information from 2D Radiation Hydrodynamic (RHD) simulations (Freytag et al. 2009). We also present the status of our 3D RHD simulations including rotation (Coriolis forces) of a cube on the surface of a brown dwarf. The BT-Settl model atmosphere grid will be available shortly via the Phoenix web simulator (http://phoenix.ens-lyon.fr/simulator/).


1994 ◽  
Vol 146 ◽  
pp. 49-60
Author(s):  
Michael Scholz ◽  
Rainer Wehrse

In this contribution we want to discuss M star atmospheres and their dependence on molecular opacities. A star belongs to the spectral class M if its optical and infrared spectrum shows strong bands of TiO and numerous strong metal lines so that for wavelengths &lt; 4000 Å there is “hardly any flux left” (Jaschek &amp; Jaschek 1987). M stars cover a very large range in luminosity: M dwarfs are the intrinsically faintest stars, whereas M giants and supergiants reach luminosities that are among the highest known. General properties of these objects are given in Table 1 (after Schmidt-Kaler 1982).


Sign in / Sign up

Export Citation Format

Share Document