scholarly journals Modeling the quiet Sun cell and network emission with ALMA

2020 ◽  
Vol 640 ◽  
pp. A57 ◽  
Author(s):  
C. E. Alissandrakis ◽  
A. Nindos ◽  
T. S. Bastian ◽  
S. Patsourakos

Observations of the Sun at millimeter wavelengths with the Atacama Large Millimeter/submillimeter Array (ALMA) offer a unique opportunity to investigate the temperature structure of the solar chromosphere. In this article we expand our previous work on modeling the chromospheric temperature of the quiet Sun, by including measurements of the brightness temperature in the network and cell interiors, from high-resolution ALMA images at 3 mm (Band 3) and 1.26 mm (Band 6). We also examine the absolute calibration of ALMA full-disk images. We suggest that the brightness temperature at the center of the solar disk in Band 6 is ∼440 K above the value recommended by White et al. (2017, Sol. Phys., 292, 88). In addition, we give improved results for the electron temperature variation of the average quiet Sun with optical depth and the derived spectrum at the center of the disk. We found that the electron temperature in the network is considerably lower than predicted by model F of Fontenla et al. (1993, ApJ, 406, 319) and that of the cell interior considerably higher than predicted by model A. Depending on the network/cell segregation scheme, the electron temperature difference between network and cell at τ = 1 (100 GHz) ranges from ∼660 K to ∼1550 K, compared to ∼3280 K predicted by the models; similarly, the electron temperature, Te ratio ranges from ∼1.10 to 1.24, compared to ∼1.55 of the model prediction. We also found that the network/cell Te(τ) curves diverge as τ decreases, indicating an increase of contrast with height and possibly a steeper temperature rise in the network than in the cell interior.

1990 ◽  
Vol 142 ◽  
pp. 197-206
Author(s):  
Wolfgang Kalkofen

The quiet solar chromosphere shows three distinct regions. Ordered according to the strength of the emission from the low and middle chromosphere they are (1) the magnetic elements on the boundary of supergranulation cells, (2) the bright points in the cell interior, and (3) the truly quiet chromosphere, also in the cell interior. The magnetic elements on the cell boundary are associated with intense magnetic fields and are heated by waves with very long periods, ranging from six to twelve minutes; the bright points are associated with magnetic elements of low field strength and are heated by (long-period) waves with periods near the acoustic cutoff period of three minutes; and the quiet cell interior, which is free of magnetic field, may be heated by short-period acoustic waves, with periods below one minute. This paper reviews mainly the heating of the bright points and concludes that the large-amplitude, long-period waves heating the bright points dissipate enough energy to account for their chromospheric temperature structure.


2010 ◽  
Vol 6 (S273) ◽  
pp. 408-411
Author(s):  
Maria A. Loukitcheva ◽  
Sami K. Solanki ◽  
Stephen M. White

AbstractMillimeter emission is known to be a sensitive diagnostic of temperature and density in the solar chromosphere. In this work we use millimeter wave data to distinguish between various atmospheric models of sunspots, whose temperature structure in the upper photosphere and chromosphere has been the source of some controversy. From mm brightness simulations we expect a radio umbra to change its appearance from dark to bright (compared to the Quiet Sun) at a given wavelength in the millimeter spectrum (depending on the exact temperature in the model used). Thereby the millimeter brightness observed above an umbra at several wavelengths imposes strong constraints on temperature and density stratification of the sunspot atmosphere, in particular on the location and depth of the temperature minimum and the location of the transition region. Current mm/submm observational data suggest that brightness observed at short wavelengths is unexpectedly low compared to the most widely used sunspot models such as of Maltby et al. (1986). A successful model that is in agreement with millimeter umbral brightness should have an extended and deep temperature minimum (below 3000 K), such as in the models of Severino et al. (1994). However, we are not able to resolve the umbra cleanly with the presently available observations and better resolution as well as better wavelength coverage are needed for accurate diagnostics of umbral brightness at millimeter wavelengths. This adds one more scientific objective for the Atacama Large Millimeter/Submillimeter Array (ALMA).


2018 ◽  
Vol 620 ◽  
pp. A124 ◽  
Author(s):  
J. M. da Silva Santos ◽  
J. de la Cruz Rodríguez ◽  
J. Leenaarts

Context. High-resolution observations of the solar chromosphere at millimeter wavelengths are now possible with the Atacama Large Millimeter Array (ALMA), bringing with them the promise of tackling many open problems in solar physics. Observations from other ground and space-based telescopes will greatly benefit from coordinated endeavors with ALMA, yet the diagnostic potential of combined optical, ultraviolet and mm observations has remained mostly unassessed. Aims. In this paper we investigate whether mm-wavelengths could aid current inversion schemes to retrieve a more accurate representation of the temperature structure of the solar atmosphere. Methods. We performed several non-LTE inversion experiments of the emergent spectra from a snapshot of 3D radiation-MHD simulation. We included common line diagnostics such as Ca II H, K, 8542 Å and Mg II h and k, taking into account partial frequency redistribution effects, along with the continuum around 1.2 mm and 3 mm. Results. We find that including the mm-continuum in inversions allows a more accurate inference of temperature as function of optical depth. The addition of ALMA bands to other diagnostics should improve the accuracy of the inferred chromospheric temperatures between log τ ∼ [−6, −4.5] where the Ca II and Mg II lines are weakly coupled to the local conditions. However, we find that simultaneous multiatom, non-LTE inversions of optical and UV lines present equally strong constraints in the lower chromosphere and thus are not greatly improved by the 1.2 mm band. Nonetheless, the 3 mm band is still needed to better constrain the mid-upper chromosphere.


1977 ◽  
Vol 25 (9) ◽  
pp. 893-894
Author(s):  
Carole Jordan
Keyword(s):  

2017 ◽  
Vol 69 (1) ◽  
Author(s):  
Tetsuya Fukuhara ◽  
Makoto Taguchi ◽  
Takeshi Imamura ◽  
Akane Hayashitani ◽  
Takeru Yamada ◽  
...  

2020 ◽  
Vol 638 ◽  
pp. A62 ◽  
Author(s):  
A. Nindos ◽  
C. E. Alissandrakis ◽  
S. Patsourakos ◽  
T. S. Bastian

Aims. We investigate transient brightenings, that is, weak, small-scale episodes of energy release, in the quiet solar chromosphere; these episodes can provide insights into the heating mechanism of the outer layers of the solar atmosphere. Methods. Using Atacama Large Millimeter/submillimeter Array (ALMA) observations, we performed the first systematic survey for quiet Sun transient brightenings at 3 mm. Our dataset included images of six 87″ × 87″ fields of view of the quiet Sun obtained with angular resolution of a few arcsec at a cadence of 2 s. The transient brightenings were detected as weak enhancements above the average intensity after we removed the effect of the p-mode oscillations. A similar analysis, over the same fields of view, was performed for simultaneous 304 and 1600 Å data obtained with the Atmospheric Imaging Assembly. Results. We detected 184 3 mm transient brightening events with brightness temperatures from 70 K to more than 500 K above backgrounds of ∼7200 − 7450 K. All events showed light curves with a gradual rise and fall, strongly suggesting a thermal origin. Their mean duration and maximum area were 51.1 s and 12.3 Mm2, respectively, with a weak preference of appearing at network boundaries rather than in cell interiors. Both parameters exhibited power-law behavior with indices of 2.35 and 2.71, respectively. Only a small fraction of ALMA events had either 304 or 1600 Å counterparts but the properties of these events were not significantly different from those of the general population except that they lacked their low-end energy values. The total thermal energies of the ALMA transient brightenings were between 1.5 × 1024 and 9.9 × 1025 erg and their frequency distribution versus energy was a power law with an index of 1.67 ± 0.05. We found that the power per unit area provided by the ALMA events could account for only 1% of the chromospheric radiative losses (10% of the coronal ones). Conclusions. We were able to detect, for the first time, a significant number of weak 3 mm quiet Sun transient brightenings. However, their energy budget falls short of meeting the requirements for the heating of the upper layers of the solar atmosphere and this conclusion does not change even if we use the least restrictive criteria possible for the detection of transient brightenings.


2017 ◽  
Vol 13 (S335) ◽  
pp. 11-13
Author(s):  
Mahender Aroori ◽  
G. Yellaiah ◽  
K. Chenna Reddy

AbstractRadio observations play a very important role in understanding the structure of the solar atmosphere. In this paper the quiet sun component of the solar radio emission has been investigated using data obtained from the Solar Indices Bulletin, National Geophysical Data Centre. By statistical method, the quiet sun component is estimated for 84 successive basic periods containing three solar rotations each using data obtained at different frequencies. From the quiet sun component we estimate the brightness temperature in each observing frequency.


1980 ◽  
Vol 86 ◽  
pp. 53-55
Author(s):  
M. R. Kundu ◽  
A. P. Rao ◽  
F. T. Erskine ◽  
J. D. Bregman

Solar radio emission at centimeter and millimeter wavelengths originates in the chromosphere and transition region and is a useful probe for the temperature and density in these regions. High spatial resolution observations of the quiet sun provide valuable information on the structure of the solar atmosphere. We have performed high resolution (~ 6″ (E-W) x 15″ (N-S)) observations at 6 cm with the Westerbork Synthesis Radio Telescope (WSRT) in June 1976 in order to search for the radio analog of the supergranulation network and to study the extent and symmetry of limb brightening. The use of the WSRT for high spatial resolution solar mapping has been described by Bregman and Felli (1976), Kundu et al. (1977), and others.


Sign in / Sign up

Export Citation Format

Share Document