nonlinear crystal
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 52)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Lukas Achatz ◽  
Evelyn Ortega ◽  
Krishna Dovzhik ◽  
Rodrigo Figueiredo Shiozaki ◽  
Jorge Fuenzalida ◽  
...  

Abstract The successful employment of high-dimensional quantum correlations and its integration in telecommunication infrastructures is vital in cutting-edge quantum technologies for increasing robustness and key generation rate. Position-momentum Einstein-Podolsky-Rosen (EPR) entanglement of photon pairs are a promising resource of such high-dimensional quantum correlations. Here, we experimentally certify EPR correlations of photon pairs generated by spontaneous parametric down-conversion (SPDC) in a nonlinear crystal with type-0 phase-matching at telecommunication wavelength for the first time. To experimentally observe EPR entanglement, we perform scanning measurements in the near- and far-field planes of the signal and idler modes. We certify EPR correlations with high statistical significance of up to 45 standard deviations. Furthermore, we determine the entanglement of formation of our source to be greater than one, indicating a dimensionality of greater than 2. Operating at telecommunication wavelengths around 1550 nm, our source is compatible with today’s deployed telecommunication infrastructure, thus paving the way for integrating sources of high-dimensional entanglement into quantum-communication infrastructures.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1549
Author(s):  
Nikolai Nikolayevich Yudin ◽  
Mikhail Zinoviev ◽  
Vladislav Gladkiy ◽  
Evgeny Moskvichev ◽  
Igor Kinyaevsky ◽  
...  

In this work, the effect of the defect structure and the parameters of antireflection interference coatings based on alternating layers of Nb2O5/Al2O3 and Nb2O5/SiO2 layers on the laser-induced damage threshold of ZGP crystals under the action of Ho:YAG laser radiation at a wavelength of 2.097 μm was determined. Coating deposition was carried out using the ion-beam sputtering method. The laser-induced damage threshold of the sample with a coating based on alternating layers Nb2O5 and SiO2 was W0d = 1.8 J/cm2. The laser-induced damage threshold of the coated sample based on alternating layers of Nb2O5 and Al2O3 was W0d = 2.35 J/cm2. It has been found that the presence of silicon conglomerates in an interference antireflection coating leads to a decrease in the laser-induced damage threshold of a nonlinear crystal due to local mechanical stresses and the scattering of incident laser radiation.


2021 ◽  
Author(s):  
Sergey V. Alekseev ◽  
Valery F. Losev ◽  
Vladimir I. Trunov ◽  
Stanislav A. Frolov

2021 ◽  
Author(s):  
Nazar A. Nikolaev ◽  
Alexander A. Mamrashev ◽  
Valery D. Antsygin ◽  
Dmitry M. Ezhov ◽  
Dmitry M. Lubenko ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tyler Kashak ◽  
Liam Flannigan ◽  
Chang-qing Xu

AbstractIn this paper, a systematic study of the relationship between nonlinear crystal length and intracavity second-harmonic generation (SHG) using MgO-doped periodically-poled lithium niobate (MgO:PPLN) is presented. The experimental results demonstrate a relationship between the maximum SHG power generated and the full-width at half maximum (FWHM) of the crystal’s temperature tuning curve to the length of the nonlinear optical crystal. It was shown that maximum SHG power increases rapidly with the increase of MgO:PPLN length, reaching a saturation length (~ 2 mm), which is much shorter than that predicted by the single-pass SHG theory. This saturation length of the MgO:PPLN crystal is almost independent on 808 nm pump power for typical powers used in continuous wave intracavity SHG lasers. In addition to this saturation effect, a broadening effect was also observed, the FWHM of the temperature tuning curve was shown to have a larger FWHM than that predicted by the single-pass SHG theory for MgO:PPLN shorter than the saturation length. This work has the benefit of allowing engineers to optimize nonlinear crystal length when developing intracavity SHG based diode-pumped solid state (DPSS) lasers.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1321
Author(s):  
Dmitry Ezhov ◽  
Snezhana Turgeneva ◽  
Nazar Nikolaev ◽  
Alexander Mamrashev ◽  
Sergei Mikerin ◽  
...  

Due to their high optical damage threshold, borate crystals can be used for the efficient nonlinear down-conversion of terawatt laser radiation into the terahertz (THz) frequency range of the electromagnetic spectrum. In this work, we carried out a thorough study of the terahertz optical properties of the lithium tetraborate crystal (Li2B4O7; LB4) at 295 and 77 K. Approximating the terahertz refractive index in the form of Sellmeier’s equations, we assessed the possibility of converting the radiation of widespread high-power laser sources with wavelengths of 1064 and 800 nm, as well as their second and third harmonics, into the THz range. It was found that four out of eight types of three-wave mixing processes are possible. The conditions for collinear phase matching were fulfilled only for the o − e → o type of interaction, while cooling the crystal to 77 K did not practically affect the phase-matching curves. However, a noticeable increase of birefringence in the THz range with cooling (from 0.12 to 0.16) led to an increase in the coherence length for o − o → e and e − e → e types of interaction, which are potentially attractive for the down-conversion of ultrashort laser pulses.


2021 ◽  
Vol 56 (4) ◽  
pp. 366-370
Author(s):  
A. S. Nikoghosyan ◽  
V. R. Tadevosyan ◽  
G. N. Goltsman ◽  
S. V. Antipov

2021 ◽  
Vol 29 (5) ◽  
pp. 727-738
Author(s):  
Yuri Morozov ◽  

Most of intracavity pumped optical parametric oscillators (OPO) are made nowaday according to a scheme with a single-resonance OPO located in the cavity of a pump laser. Usually the cavities of the pump and OPO (signal) emission have different values of round-trip time (delay). Aim of the study is therefore to build up the mathematical model of intracavity optical parametric oscillator (ICOPO) considered as a time-delay dynamic system with two values of delay in both cavities (the pump and signal). Methods. The model allows to analyze the steady state (equilibrium point) of the dynamic system and its stability with the help of characteristic equation’s solution. Results. Countless set of the characteristic equation roots is shown to consist of complex-conjugate pairs with imaginary parts which are nearly multiples of intermode beat frequencies in the pump and signal cavities. The diagram of stability depending on the position of nonlinear crystal in the resonator was built on the parameter plane. Features of the plane partition into the areas of stability/instabilty vs behavior of the characteristic equation roots are examined. Discussion. The results of the study allow to consider an ICOPO as the time-delay dynamic system thus adding to the physical picture of intracavity parametric oscillators.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mudassar Nauman ◽  
Jingshi Yan ◽  
Domenico de Ceglia ◽  
Mohsen Rahmani ◽  
Khosro Zangeneh Kamali ◽  
...  

AbstractNonlinear light sources are central to a myriad of applications, driving a quest for their miniaturisation down to the nanoscale. In this quest, nonlinear metasurfaces hold a great promise, as they enhance nonlinear effects through their resonant photonic environment and high refractive index, such as in high-index dielectric metasurfaces. However, despite the sub-diffractive operation of dielectric metasurfaces at the fundamental wave, this condition is not fulfilled for the nonlinearly generated harmonic waves, thereby all nonlinear metasurfaces to date emit multiple diffractive beams. Here, we demonstrate the enhanced single-beam second- and third-harmonic generation in a metasurface of crystalline transition-metal-dichalcogenide material, offering the highest refractive index. We show that the interplay between the resonances of the metasurface allows for tuning of the unidirectional second-harmonic radiation in forward or backward direction, not possible in any bulk nonlinear crystal. Our results open new opportunities for metasurface-based nonlinear light-sources, including nonlinear mirrors and entangled-photon generation.


Sign in / Sign up

Export Citation Format

Share Document