scholarly journals Evolution patterns of the peak energy in the GRB prompt emission

Author(s):  
H.-X. Gao ◽  
J.-J. Geng ◽  
Y.-F. Huang
Keyword(s):  
2020 ◽  
Vol 492 (3) ◽  
pp. 3622-3630
Author(s):  
Lin Lan ◽  
Rui-Jingi Lu ◽  
Hou-Jun Lü ◽  
Jun Shen ◽  
Jared Rice ◽  
...  

ABSTRACT Short gamma-ray bursts (GRB) with extended emission (EE) that are composed of an initial short hard spike followed by a long-lasting EE are thought to comprise a sucategory of short GRBs. The narrow energy band available during the Swift era, combined with a lack of spectral information, prevented the discovery of the intrinsic properties of these events. In this paper, we perform a systematic search of short GRBs with EE using all available Fermi/GBM data. The search identified 26 GBM-detected short GRBs with EE that are similar to GRB 060614 observed by Swift/BAT. We focus on investigating the spectral and temporal properties of both the hard spike and the EE component of all 26 GRBs, and explore differences and possible correlations between them. We find that while the peak energy (Ep) of the hard spikes is slightly harder than that of the EE, their fluences are comparable. The harder Ep seems to correspond to a larger fluence and peak flux, with a large scatter for both the hard spike and the EE component. Moreover, the Ep of both the hard spike and the EE are compared with other short GRBs. Finally, we also compare the properties of GRB 170817A with those of short GRBs with EE and find no significant statistical differences between them. We find that GRB 170817A has the lowest Ep, probably because it is off-axis.


2019 ◽  
Vol 625 ◽  
pp. A60 ◽  
Author(s):  
M. E. Ravasio ◽  
G. Ghirlanda ◽  
L. Nava ◽  
G. Ghisellini

The long-lasting tension between the observed spectra of gamma-ray bursts (GRBs) and the predicted synchrotron emission spectrum might be solved if electrons do not completely cool. Evidence of incomplete cooling was recently found in Swift GRBs with prompt observations down to 0.1 keV, and in one bright Fermi burst, GRB 160625B. Here we systematically search for evidence of incomplete cooling in the spectra of the ten brightest short and long GRBs observed by Fermi. We find that in eight out of ten long GRBs there is compelling evidence of a low-energy break (below the peak energy) and good agreement with the photon indices of the synchrotron spectrum (respectively −2/3 and −3/2 below the break and between the break and the peak energy). Interestingly, none of the ten short GRBs analysed shows a break, but the low-energy spectral slope is consistent with −2/3. In a standard scenario, these results imply a very low magnetic field in the emission region (B′∼10 G in the comoving frame), at odd with expectations.


Author(s):  
Asaf Pe'er ◽  
Peter Mészáros ◽  
Martin J Rees

A thermal radiative component is likely to accompany the first stages of the prompt emission of gamma-ray bursts (GRBs) and X-ray flashes. We analyse the effect of such a component on the observable spectrum, assuming that the observable effects are due to a dissipation process occurring below or near the thermal photosphere. For comparable energy densities in the thermal and leptonic components, the dominant emission mechanism is Compton scattering. This leads to a nearly flat energy spectrum ( νF ν ∝ ν 0 ) above the thermal peak at approximately 10–100 keV and below 10–100 MeV, for a wide range of optical depths 0.03≲ τ ≲100, regardless of the details of the dissipation mechanism or the strength of the magnetic field. For higher values of the optical depth, a Wien peak is formed at 100 keV to 1 MeV. In particular, these results are applicable to the internal shock model of GRBs, as well as to slow dissipation models, e.g. as might be expected from reconnection, if the dissipation occurs at a sub-photospheric radii. We conclude that dissipation near the thermal photosphere can naturally explain (i) clustering of the peak energy at sub-MeV energies at early times, (ii) steep slopes observed at low energies, and (iii) a flat spectrum above 10 keV at late times. Our model thus provides an alternative scenario to the optically thin synchrotron–synchrotron self-Compton model.


2016 ◽  
Vol 25 (05) ◽  
pp. 1630014 ◽  
Author(s):  
Filippo Frontera ◽  
Lorenzo Amati ◽  
Ruben Farinelli ◽  
Simone Dichiara ◽  
Cristiano Guidorzi ◽  
...  

It is recognized that very likely the correlation between peak energy [Formula: see text] and bolometric intensity is intrinsic to GRBs. However, its physical origin is still debated. In this paper, we will discuss a possible interpretation of the correlation in the light of a GRB prompt emission spectral model, grbcomp, proposed in [L. Titarchuk, R. Farinelli, F. Frontera and L. Amati, Astrophys. J. 752 (2012) 116]. grbcomp is essentially a photospheric model for the prompt emission of GRBs. Its main ingredients are a thermal bath of soft seed photons and a subrelativistically expanding outflow plasma, consequence of the star explosion. The emerging spectrum is the result of two phases: first, up to the photospheric radius, Comptonization of a subrelativistic electron outflow with thermal bath of soft photons, then, convolution of the Comptonized photons in the first phase with a Green function. The result of this convolution is consistent with different physical processes, in particular Inverse Compton. grbcomp has been successfully tested using a significant sample of GRB time resolved spectra in the broad energy band from 2[Formula: see text]keV to 2[Formula: see text]MeV [F. Frontera, L. Amati, R. Farinelli, S. Dichiara, C. Guidorzi, R. Landi and L. Titarchuk, Astrophys. J. 779 (2013) 175].


2018 ◽  
Vol 616 ◽  
pp. A138 ◽  
Author(s):  
G. Oganesyan ◽  
L. Nava ◽  
G. Ghirlanda ◽  
A. Celotti

Detection of prompt emission by Swift-XRT provides a unique tool to study how the prompt spectrum of gamma-ray bursts (GRBs) extends down to the soft X-ray band. This energy band is particularly important for prompt emission studies, since it is towards low energies that the observed spectral shape is in disagreement with the synchrotron predictions. Unfortunately, the number of cases where XRT started observing the GRB location during the prompt phase is very limited. In this work, we collect a sample of 34 GRBs and perform joint XRT+BAT spectral analysis of prompt radiation, extending a previous study focused on the 14 brightest cases. Fermi-GBM observations are included in the analysis when available (11 cases), allowing the characterization of prompt spectra from soft X-rays to MeV energies. In 62% of the spectra, the XRT data reveal a hardening of the spectrum, well described by introducing an additional, low-energy power-law segment (with index α1) into the empirical fitting function. The break energy below which the spectrum hardens has values between 3 keV and 22 keV. A second power-law (α2) describes the spectrum between the break energy and the peak energy. The mean values of the photon indices are 〈α1〉 = −0.51 (σ = 0.24) and 〈α2〉 = −1.56 (σ = 0.26). These are consistent, within one σ, with the synchrotron values in fast cooling regime. As a test, if we exclude XRT data from the fits we find typical results: the spectrum below the peak energy is described by a power law with 〈α〉 = −1.15. This shows the relevance of soft X-ray data in revealing prompt emission spectra consistent with synchrotron spectra. Finally, we do not find any correlation between the presence of the X-ray break energy and the flux, fluence, or duration of the prompt emission.


2011 ◽  
Vol 7 (S279) ◽  
pp. 355-356
Author(s):  
Akira Mizuta ◽  
Shigehiro Nagataki

AbstractPhotospheric thermal radiation components from gamma-ray burst (GRB) jets are estimated based on relativistic hydrodynamic simulations of jet propagation. The light curves and spectra are derived, considering viewing angle effects. The light curves exhibit several seconds time variability and the luminosity is as large as that of GRB prompt emission. For observers at a viewing angle of several degrees the spectra below the peak energy are much softer than that of Planck distribution and close to typical GRB spectrum. Whereas the spectra for observers at small viewing angle are hard and close to Planck distribution. Numerical Amati and Yonetoku relations are reproduced.


Author(s):  
R. Gupta ◽  
S. B. Pandey ◽  
A. J. Castro-Tirado ◽  
A. Kumar ◽  
A. Aryan ◽  
...  

TeV emissions from γ-ray bursts are very important to study their origin and the radiation mechanisms in detail. Recent observations of TeV photons in some of the GRBs are challenging to be explained by the traditional Synchrotron radiation mechanism. In this work, we present the results of a detailed investigation of the prompt and afterglow emissions of recently discovered TeV GRBs (GRB 180720B, GRB 190114C, and GRB 190829A) based on the publicly available prompt and afterglow data including 10.4m GTC and 1.3m DFOT telescopes observations of the first HESS and MAGIC bursts, respectively. Timeresolved spectroscopy of prompt emission of GRB 180720B and GRB 190114C shows an intensity tracking nature of peak energy. In the case of GRB 190829A, peak energy evolution shows a hard to soft tracking trend followed by a very soft and chaotic trend. GRB 190829A is a peculiar intermediate luminous two episodic burst with first emission episode outlier to Amati correlation. We analyzed the late time Fermi-LAT emission that encapsulates the H.E.S.S. and MAGIC observations. Some of the LAT photons are likely to be associated with these GRBs and they could have an Inverse Compton radiation mechanism.


Sign in / Sign up

Export Citation Format

Share Document