scholarly journals Modelling chromospheric line profiles in NGC 2808: evidence of mass loss from RGB stars

2006 ◽  
Vol 454 (2) ◽  
pp. 609-615 ◽  
Author(s):  
P. J. D. Mauas ◽  
C. Cacciari ◽  
L. Pasquini
2014 ◽  
Vol 439 (1) ◽  
pp. 908-923 ◽  
Author(s):  
David H. Cohen ◽  
Emma E. Wollman ◽  
Maurice A. Leutenegger ◽  
Jon O. Sundqvist ◽  
Alex W. Fullerton ◽  
...  

1982 ◽  
Vol 98 ◽  
pp. 377-385 ◽  
Author(s):  
Theodore P. Snow

Resonance-line profiles of SiIII and SiIV lines in 22 B and Be stars have been analyzed in the derivation of mass-loss rates. Of the 19 known Be or shell stars in the sample group, all but one show evidence of winds. It is argued that for stars of spectral type B1.5 and later, SiIII and SiIV are the dominant stages of ionization, and this conclusion, together with theoretical fits to the line profiles, leads to mass-loss rates between 10-11 and 3 × 10-9 for the stars. The rate of mass loss does not correlate simply with stellar parameters, and probably is variable with time. The narrow FeIII shell lines often seen in the ultraviolet spectra of Be stars may arise at low levels in the wind, below the strong acceleration zone. The mass-loss rates from Be stars are apparently insufficient to affect stellar evolution.


1987 ◽  
Vol 92 ◽  
pp. 84-86
Author(s):  
D. R. Gies ◽  
David McDavid

Evidence is now accumulating that many Be stars display photospheric line profile variations on timescales of days or less that are probably caused by nonradial pulsations (Baade 1984; Penrod 1986). In some circumstances these pulsations can promote mass loss into the circumstellar envelope, and consequently the conditions in the inner part of the envelope may vary on similar timescales. Changes in the envelope could produce variations in the polarization and emission line profiles, and observers have reported rapid variability in both. We describe here an initial attempt to search for simultaneous variations in continuum polarization, Hα emission, and the He I λ6678 photospheric absorption line in order to investigate correlated changes on short timescales.


1995 ◽  
Vol 163 ◽  
pp. 164-165
Author(s):  
E. Santolaya Rey ◽  
A. Herrero ◽  
J. Puls

Synthetic line-profiles from unified model atmospheres are presented. The main characteristics of the code are also shown concerning both the calculation of NLTE populations (in a consistent way with the radiation field), and the formal solution to obtain emergent profiles. Stark-broadening is considered in this last step. Emergent Hα profiles for a grid of models are shown for Teff = 50 000 K, covering a wide range of stellar radii and mass-loss.


2013 ◽  
Vol 767 (1) ◽  
pp. 56 ◽  
Author(s):  
Alexei A. Pevtsov ◽  
Luca Bertello ◽  
Han Uitenbroek

2000 ◽  
Vol 175 ◽  
pp. 632-635
Author(s):  
J.E. Bjorkman ◽  
B.P. Abbott

AbstractUsing the wind-compressed disk model to determine the density and velocity of a rapidly rotating wind, we calculate the 2-D ionization structure and corresponding line profiles. We find that previous estimates of the mass-loss rate based on spherically symmetric models may be a factor of 5–10 too small.


2020 ◽  
Vol 500 (4) ◽  
pp. 4837-4848
Author(s):  
Svetozar A Zhekov

ABSTRACT We modelled the Chandra and Rossi X-ray Timing Explorer X-ray spectra of the massive binary WR 140 in the framework of the standard colliding stellar wind (CSW) picture. Models with partial electron heating at the shock fronts are a better representation of the X-ray data than those with complete temperature equalization. Emission measure of the X-ray plasma in the CSW region exhibits a considerable decrease at orbital phases near periastron. This is equivalent to variable effective mass-loss rates over the binary orbit. At orbital phases near periastron, a considerable X-ray absorption in excess to that from the stellar winds in WR 140 is present. The standard CSW model provides line profiles that in general do not match well the observed line profiles of the strong line features in the X-ray spectrum of WR 140. The variable effective mass-loss rate could be understood qualitatively in CSW picture of clumpy stellar winds where clumps are efficiently dissolved in the CSW region near apastron but not at periastron. However, future development of CSW models with non-spherically symmetric stellar winds might be needed to get a better correspondence between theory and observations.


2018 ◽  
Vol 614 ◽  
pp. A91 ◽  
Author(s):  
M. Haucke ◽  
L. S. Cidale ◽  
R. O. J. Venero ◽  
M. Curé ◽  
M. Kraus ◽  
...  

Context. Variable B supergiants (BSGs) constitute a heterogeneous group of stars with complex photometric and spectroscopic behaviours. They exhibit mass-loss variations and experience different types of oscillation modes, and there is growing evidence that variable stellar winds and photospheric pulsations are closely related. Aims. To discuss the wind properties and variability of evolved B-type stars, we derive new stellar and wind parameters for a sample of 19 Galactic BSGs by fitting theoretical line profiles of H, He, and Si to the observed ones and compare them with previous determinations. Methods. The synthetic line profiles are computed with the non-local thermodynamic equilibrium (NLTE) atmosphere code FASTWIND, with a β-law for hydrodynamics. Results. The mass-loss rate of three stars has been obtained for the first time. The global properties of stellar winds of mid/late B supergiants are well represented by a β-law with β > 2. All stars follow the known empirical wind momentum–luminosity relationships, and the late BSGs show the trend of the mid BSGs. HD 75149 and HD 99953 display significant changes in the shape and intensity of the Hα line (from a pure absorption to a P Cygni profile, and vice versa). These stars have mass-loss variations of almost a factor of 2.8. A comparison among mass-loss rates from the literature reveals discrepancies of a factor of 1 to 7. This large variation is a consequence of the uncertainties in the determination of the stellar radius. Therefore, for a reliable comparison of these values we used the invariant parameter Qr. Based on this parameter, we find an empirical relationship that associates the amplitude of mass-loss variations with photometric/spectroscopic variability on timescales of tens of days. We find that stars located on the cool side of the bi-stability jump show a decrease in the ratio V∞∕Vesc, while their corresponding mass-loss rates are similar to or lower than the values found for stars on the hot side. Particularly, for those variable stars a decrease in V∞∕Vesc is accompanied by a decrease in Ṁ. Conclusions. Our results also suggest that radial pulsation modes with periods longer than 6 days might be responsible for the wind variability in the mid/late-type. These radial modes might be identified with strange modes, which are known to facilitate (enhanced) mass loss. On the other hand, we propose that the wind behaviour of stars on the cool side of the bi-stability jump could fit with predictions of the δ−slow hydrodynamics solution for radiation-driven winds with highly variable ionization.


2020 ◽  
Vol 642 ◽  
pp. A137
Author(s):  
Z. Nagy ◽  
A. Menechella ◽  
S. T. Megeath ◽  
J. J. Tobin ◽  
J. J. Booker ◽  
...  

Aims. We aim to characterize the outflow properties of a sample of early Class 0 phase low-mass protostars in Orion, which were first identified by the Herschel Space Observatory. We also look for signatures of infall in key molecular lines. Methods. Maps of CO J = 3–2 and J = 4–3 toward 16 very young Class 0 protostars were obtained using the Atacama Pathfinder EXperiment (APEX) telescope. We searched the data for line wings indicative of outflows and calculated masses, velocities, and dynamical times for the outflows. We used additional HCO+, H13CO+, and NH3 lines to look for infall signatures toward the protostars. Results. We estimate the outflow masses, forces, and mass-loss rates based on the CO J = 3–2 and J = 4–3 line intensities for eight sources with detected outflows. We derive upper limits for the outflow masses and forces of sources without clear outflow detections. The total outflow masses for the sources with clear outflow detections are in the range between 0.03 and 0.16 M⊙ for CO J = 3–2 and between 0.02 and 0.10 M⊙ for CO J = 4–3. The outflow forces are in the range between 1.57 × 10−4 and 1.16 × 10−3 M⊙ km s−1 yr−1 for CO J = 3–2 and between 1.14 × 10−4 and 6.92 × 10−4 M⊙ km s−1 yr−1 for CO J = 4–3. Nine protostars in our sample show asymmetric line profiles indicative of infall in HCO+, compared to H13CO+ or NH3. Conclusions. The outflow forces of the protostars in our sample show no correlation with the bolometric luminosity, unlike those found by some earlier studies for other Class 0 protostars. The derived outflow forces for the sources with detected outflows are similar to those found for other, more evolved, Class 0 protostars, suggesting that outflows develop quickly in the Class 0 phase.


2020 ◽  
Vol 56 (1) ◽  
pp. 63-69 ◽  
Author(s):  
M. R. Sanad ◽  
M. A. Abdel-Sabour

Ultraviolet observations of the symbiotic nova HM Sge were obtained from the International Ultraviolet Explorer (IUE) through the interval from 1980 - 1992. Three line profiles demonstrating the variations of some emission lines at different dates are presented. We determined the reddening of HM Sge from the 2200 Å absorption feature; the estimated value is E(B − V ) = 0.34 ± 0.02. We studied CIV at 1550 Å, He II 1640 Å, and CIII] at 1909 Å produced in the wind from the hot star. The line flux variations at different dates could be explained in terms of the variations of temperature in the emitting region as a result of mass loss variations. The IUE observations can be explained by the models of Girard & Willson (1987); Formiggini et al. (1995).


Sign in / Sign up

Export Citation Format

Share Document