scholarly journals Development of in vitro culture establishment conditions and micropropagation of grapevine rootstock cultivar ‘Ruggeri-140’

2021 ◽  
Vol 39 ◽  
pp. 03002
Author(s):  
Gayane Melyan ◽  
Andranik Barsegyan ◽  
Narek Sahakyan ◽  
Kima Dangyan ◽  
Yuri Martirosyan

Optimization of in vitro culture conditions of grapevine phylloxera-resistant rootstock cultivar ‘Ruggeri-140’(Vitisberlandieri x Vitisrupestris) was carried out. Among the different sterilization treatments, maximum aseptic cultures were obtained for both explants apical tips and nodal segments when treated with Ca(ClO)2 at concentration of 1.5 % for 10 minutes plus 70 % ethanol for 30 s (T7). The maximum shoot proliferation was observed both in apical and nodal meristems cultured on MS medium supplemented with 1.0 mg/l BAP. MS/2 medium containing 1.0 mg/l indole-3-butric acid (IBA) gave the highest rooting percentage (100%) with the highest mean number and length of roots. The ex vitro survival of rooted micro shoots was 75.0%.

2018 ◽  
Vol 77 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Mahipal S. Shekhawat ◽  
M. Manokari

AbstractHybanthus enneaspermusis a rare medicinal plant. We defined a protocol for micropropagation,ex vitrorooting of cloned shoots and their acclimatization. Surface-sterilized nodal segments were cultured on Murashige and Skoog (MS) medium with different concentrations of 6-benzylaminopurine (BAP) and kinetin (Kin). Medium supplemented with 1.5 mg L−1BAP was found optimum for shoot induction from the explants and 6.4±0.69 shoots were regenerated from each node with 97% response. Shoots were further proliferated maximally (228±10.3 shoots per culture bottle with 7.5±0.43 cm length) on MS medium augmented with 1.0 mg L−1each of BAP and Kin within 4–5 weeks. The shoots were rootedin vitroon half strength MS medium containing 2.0 mg L−1indole-3 butyric acid (IBA). The cloned shoots were pulse-treated with 300 mg L–1 of IBA and cultured on soilrite® in a greenhouse. About 96% of the IBA-pulsed shoots rootedex vitroin soilrite®, each shoot producing 12.5±0.54 roots with 5.1±0.62 cm length. Theex vitrorooted plantlets showed a better rate of survival (92%) in a field study thanin vitrorooted plantlets (86%). A comparative foliar micromorphological study ofH. enneaspermuswas conducted to understand the micromorphological changes during plant developmental processes fromin vitrotoin vivoconditions in terms of variations in stomata, vein structures and spacing, and trichomes. This is the first report onex vitrorooting inH. enneaspermusand the protocol can be exploited for conservation and large-scale propagation of this rare and medicinally important plant.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1657
Author(s):  
Nqobile P. Hlophe ◽  
Adeyemi O. Aremu ◽  
Karel Doležal ◽  
Johannes Van Staden ◽  
Jeffrey F. Finnie

In Africa and Asia, members of the genus Brachystelma are well-known for their diverse uses, especially their medicinal and nutritional values. However, the use of many Brachystelma species as a valuable resource is generally accompanied by the concern of over-exploitation attributed to their slow growth and general small size. The aim of the current study was to establish efficient micropropagation protocols for three Brachystelma species, namely Brachystelma ngomense (endangered), Brachystelma pulchellum (vulnerable) and Brachystelma pygmaeum (least concern), as a means of ensuring their conservation and survival. This was achieved using nodal segments (~10 mm in length) as the source of explants in the presence of different concentrations of three cytokinins (CK) namely N6-benzyladenine (BA), isopentenyladenine (iP) and meta-topolin riboside (mTR), over a period of 6 weeks. The highest (25 µM) concentration of cytokinin treatments typically resulted in significantly higher shoot proliferation. However, each species differed in its response to specific CK: the optimal concentrations were 25 µM mTR, 25 µM iP and 25 µM BA for Brachystelma ngomense, Brachystelma pulchellum and Brachystelma pygmaeum, respectively. During the in vitro propagation, both Brachystelma ngomense and Brachystelma pygmaeum rooted poorly while regenerated Brachystelma pulchellum generally lacked roots regardless of the CK treatments. Following pulsing (dipping) treatment of in vitro-regenerated shoots with indole-3-butyric acid (IBA), acclimatization of all three Brachystelma species remained extremely limited due to poor rooting ex vitro. To the best of our knowledge, the current protocols provide the first successful report for these Brachystelma species. However, further research remains essential to enhance the efficiency of the devised protocol.


Author(s):  
Alexandru Fira ◽  
Nirmal Joshee ◽  
Victoria Cristea ◽  
Manuela Simu ◽  
Monica Harta ◽  
...  

Micropropagation of Lycium barbarum cv. 'Ningxia N1' was achieved. The cultures were by initiated by axenical seed germination. The highest shoot proliferation was obtained on the MS media with 1.33 or 2.22 µM benzyl adenine, gelled with wheat starch as an agar alternative. The treatments with 2.22 µM benzyl adenine ensured proliferation rates superior to the ones with 1.33 μM benzyl adenine, but the latter provided longer and more robust shoots. Use of large microcuttings as an explant onto the multiplication media ensured higher in vitro explant survival, higher number of shoots regeneration and more vigorous plantlets. The microcuttings inserted vertically into the media yielded superior growth and multiplication as compared to the microcuttings placed horizontally. The non-rooted, elongated shoots from the treatment 1.33 μM benzyl adenine were either rooted in vitro on a hormone-free MS medium with starch or used for direct ex vitro rooting and acclimatization. The optimal number of microcuttings/vessel for in vitro rooting was 40 and the rooted plantlets were efficiently acclimatized ex vitro by three methods: float hydroculture in floating cell trays, floating perlite, and in Jiffy7 pellets.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 235 ◽  
Author(s):  
Kyungtae Park ◽  
Bo Kook Jang ◽  
Ha Min Lee ◽  
Ju Sung Cho ◽  
Cheol Hee Lee

Selaginella martensii, an evergreen perennial fern that is native to South America and New Zealand, is named “frosty fern” because of its beautiful white-colored leaves and it is used as an ornamental plant. Efficient propagation methods for this species have not been developed. We aimed to develop an efficient propagation method for S. martensii through in vitro culture. We investigated culture conditions that are suitable for shoot-tip proliferation and growth. The optimum shoot-tip culture conditions were determined while using Murashige and Skoog (MS) medium (quarter, half, full, or double strength) and macronutrients (sucrose and two nitrogen sources) at various concentrations. In MS medium, the shoot tips formed a maximum of 6.77 nodes per explant, and each node formed two new shoot tips (i.e., 26 or 64 shoot tips). When using branching segments containing an angle meristem, the shoot-to-rhizophore formation ratio could be controlled by medium supplementation with plant-growth regulators. Sporophytes that were grown from shoot tips in vitro were acclimated in ex vitro soil conditions and successfully survived in the greenhouse. Numerous shoot tips could be obtained from in vitro-grown sporophytes and be proliferated ex vitro to produce a large number of plants. This method provides a way of shortening the time that is required for producing a large stock of S. martensii planting material.


2018 ◽  
Vol 30 (2) ◽  
pp. 283-294 ◽  
Author(s):  
Mani Manokari ◽  
Mahipal S. Shekhawat

Abstract The present study reports an efficient in vitro propagation system for Turnera ulmifolia using nodal segments as explants. Turnera ulmifolia (Passifloraceae) is an important garden plant with multipotent medicinal values. Effective shoot proliferation was achieved on agar gelled MS medium (Murashige and Skoog, 1962). The maximum number of shoots (8.3 ± 0.57) per initial explant was obtained on MS medium supplemented with 8.88 mM of 6-benzylaminopurine (BAP) and 0.54 mM of α-naphthalene acetic acid (NAA). The highest number of shoots (59.5 ± 2.10) proliferated on semi-solid MS medium (with agar) augmented with 2.22 mM of BAP and 2.32 mM of kinetin (Kin) along with 0.54 mM of NAA. Longer (4-5 cm) and healthy shoots were rooted (12.0 ± 0.10 roots per shoot) on half-strength MS medium fortified with 9.84 mM of indole-3 butyric acid (IBA). The in vitro regenerated plantlets were hardened in the greenhouse and transferred to the field. Significant developmental changes were observed in the foliar micromorphology of in vitro raised plantlets when these were transferred to the field. The stomatal index was gradually reduced (26.72 to 21.25) in the leaves from in vitro to field environments. But, vein-islets and veinlet terminations (13.4 and 7.6) were increased (39.7 and 18.4) respectively from in vitro to in vivo grown plants. Simple, unicellular, less frequent and underdeveloped trichomes were observed with the leaves of in vitro plants but fully developed trichomes recorded in the field transferred plants. The study could help in understanding the response and adaptation of tissue culture raised plantlets towards changed environmental conditions.


1970 ◽  
Vol 35 (1) ◽  
pp. 135-142 ◽  
Author(s):  
MA Malek ◽  
D Khanam ◽  
M Khatun ◽  
MH Molla ◽  
MA Mannan

An experiment was conducted to study the in vitro culture of pointed gourd. Cotyledon rescued from physiologically matured seeds (PMS) and immatured seeds (IMS) of pointed gourd were used as explants. Cotyledon excised from PMS responded very well in all culture conditions. Plant regenerated from cotyledon of PMS ranged from 38 to 96% in different hormonal formulations of culture media. Highest percentage of shoot regeneration was observed in MS + 1.0 mg/l BAP and lowest in MS + 2.5 mg/l BAP. No plant regeneration was observed in cotyledon from immatured seeds. The highest percentage of root induction (99%) was achieved in half MS medium supplemented with 0.5 mg/l NAA. The regenerated plantlets were successfully established in earthen pot. Keywords: Cotyledon; in vitro; pointed gourd. DOI: 10.3329/bjar.v35i1.5874Bangladesh J. Agril. Res. 35(1) : 135-142, March 2010


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 560d-560
Author(s):  
Dennis P. Stimart ◽  
John C. Mather

Cotyledons from developing embryos 6 to 8 weeks old of Liatris spicata (blazing star) were cultured on Murashige-Skoog (MS) medium containing 0, 0.4, 4.4, and 44.4 μ M benzyladenine (BA) or 0, 0.2, 2.2, and 22.2 μ M thidiazuron (TDZ) to induce adventitious shoot formation. The highest percent of cotyledons forming shoots with highest shoot counts was on medium containing 2.2 μ M TDZ. Vitreous shoots formed on medium with 22.2 μ M TDZ. Callus derived from cotyledons and cultured on medium containing 4.44 μ M BA or 2.2 μ M TDZ formed adventitious shoots with highest shoot counts on 4.44 μ M BA. Adventitious shoots derived from cotyledons and callus were rooted on MS medium with 5.0 μ Mindole-3-butyric acid, acclimatized and grown ex vitro. All micropropagated plants appeared similar to each other.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 877B-877
Author(s):  
Maritza I. Tapia ◽  
Paul E Read

It has been previously demonstrated that thidiazuron (TDZ) enhanced the regeneration and multiple shoot proliferation of vinifera grape cultivars. To determine the effect of TDZ on the multiplication of hybrid grapes, in vitro nodal segments from cultivars Chancellor, Leon Millot, and Valiant were cultured on MS medium supplemented with 0, 0.01, 0.05, 0.1, 0.5, and 1.0 mg TDZ/liter. After 1 month, the higher percentage of rooted shoots was obtained from the explants cultured in medium containing the lowest concentration of TDZ (0.01 mg–liter–1) independent of the genotype. Multiple shoot proliferation was favored by high concentrations of TDZ (0.5 and 1.0 mg–liter–1). An average of 0.39 and 0.39 shoots, respectively, was obtained from `Chancellor' cultures, 0.56 and 0.59 from `Leon Millot', and 1.93 and 2.38 from `Valiant'. Vitrification and teratological structures were observed in all the cultures of the three genotypes, but less vitrification occurred in `Valiant' plantlets.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5888
Author(s):  
Desislava I. Mantovska ◽  
Miroslava K. Zhiponova ◽  
Milen I. Georgiev ◽  
Tsvetinka Grozdanova ◽  
Dessislava Gerginova ◽  
...  

Micropropagation of rare Veronica caucasica M. Bieb. was achieved by successful in vitro cultivation of mono-nodal segments on MS medium supplemented with 1.0 mg L–1 6-benzylaminopurine (BA) and then transferring the regenerated plants on hormone free basal MS medium for root development. In vitro multiplicated plants were successively acclimated in a growth chamber and a greenhouse with 92% survival. The number of plastid pigments and the total phenolics content in in vitro cultivated and ex vitro adapted plants were unchanged, and no accumulation of reactive oxygen species (ROS) was detected by staining with 3-3′-diaminobenzidine (DAB) and 2′,7′-dichlorofluorescein diacetate (DCF-DA). Nuclear Magnetic Resonance (NMR) fingerprinting allowed for the identification of the major alterations in metabolome of V. caucasica plants during the process of ex situ conservation. Iridoid glucosides such as verproside, aucubin and catalpol were characteristic for in vitro cultivated plants, while in ex vitro acclimated plants phenolic acid–protocatechuic acid and caffeic acid appeared dominant. The successful initiation of in vitro and ex vitro cultures is an alternative biotechnological approach for the preservation of V. caucasica and would allow for further studies of the biosynthetic potential of the species and the selection of lines with a high content of pharmaceutically valuable molecules and nutraceuticals.


Sign in / Sign up

Export Citation Format

Share Document