scholarly journals Investigation of air pollutants in rural nursery school – a case study

2018 ◽  
Vol 28 ◽  
pp. 01022 ◽  
Author(s):  
Anna Mainka ◽  
Elwira Zajusz-Zubek ◽  
Barbara Kozielska ◽  
Ewa Brągoszewska

Children’s exposure to air pollutants is an important public health challenge. Indoor air quality (IAQ) in nursery school is believed to be different from elementary school. Moreover, younger children are more vulnerable to air pollution than higher grade children because they spend more time indoors, and their immune systems and bodies are less mature. The purpose of this study was to evaluate the indoor air quality (IAQ) at naturally ventilated rural nursery schools located in Upper Silesia, Poland. We investigated the concentrations of volatile organic compounds (VOCs), particulate matter (PM), bacterial and fungal bioaerosols, as well as carbon dioxide (CO2) concentrations in younger and older children's classrooms during the winter and spring seasons. The concentration of the investigated pollutants in indoor environments was higher than those in outdoor air. The results indicate the problem of elevated concentrations of PM2.5 and PM10 inside the examined classrooms, as well as that of high levels of CO2 exceeding 1,000 ppm in relation to outdoor air. The characteristics of PM and CO2 levels were significantly different, both in terms of classroom occupation (younger or older children) and of season (winter or spring).

2021 ◽  
pp. 1420326X2110382
Author(s):  
Nuodi Fu ◽  
Moon Keun Kim ◽  
Bing Chen ◽  
Stephen Sharples

This study investigated the impact of outdoor air pollutants on indoor air quality in a high-rise building, considering factors related to the seasons and air infiltration. Further, the impact of atmospheric weather conditions on air infiltration has been analysed in a downtown area of Suzhou, China. The influence of the outdoor air pollution rate on indoor air quality in the office building was investigated based on on-site measurements and computer simulations. Results showed that the impact of outdoor air pollutants on indoor air quality was highest in winter, followed by spring, autumn and summer. Furthermore, multiple factors, which affect the indoor air quality in a high-rise building, have been further investigated in this study, including stack effect, wind effect, infiltration rate, outdoor air pollution rate, seasonal change and air filter efficiency. The significant influence of these factors on the indoor air quality level with floor height variations has been verified. Based on the analysis, a high-efficiency filter is recommended to maintain healthy indoor air quality. Meanwhile, a double-filter system is required if a building is exposed to heavily polluted outdoor air considering the most substantial impact of outdoor air pollutants on indoor air quality in winter. Moreover, a numerical model of steady-state indoor PM2.5 concentration was established to determine the suitable air filter efficiency and airtightness.


2011 ◽  
Vol 20 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Min Jeong Kim ◽  
Yong Su Kim ◽  
Abtin Ataei ◽  
Jeong Tai Kim ◽  
Jung Jin Lim ◽  
...  

The purpose of this study was to evaluate changes in the concentration of air pollutants in the indoor environments, which could be caused by seasonal changes or changes in operating conditions of subway metro stations. In fact, there are many different types of pollution that can cause contamination in subway stations, and changes in operating conditions can also lead to changes in the indoor air quality (IAQ). Therefore, in order to establish a proper management of IAQ, it would be necessary to evaluate the changes in IAQ according to the changes in conditions. To do this, the present study used a multivariate analysis of variance (MANOVA). The results of testing the hypothesis proved that two groups, divided by the condition of a platform screen door (PSD) system, could differ statistically. Furthermore, those multidimensional differences were caused by installation of a PSD system. When applied to a real-time tele-monitoring system, MANOVA could clearly identify the daily and weekly variations of IAQ in the subway station, as well as the PSD system’s condition. Accordingly, this method could be useful for developing a multivariate system to statistically evaluate the experimental IAQ results in order to optimise operating conditions in a subway metro station to improve IAQ, and to minimise adverse health effects on passengers by exposure to harmful substances.


Indoor Air ◽  
2017 ◽  
Vol 27 (6) ◽  
pp. 1168-1176 ◽  
Author(s):  
S. Langer ◽  
O. Ramalho ◽  
E. Le Ponner ◽  
M. Derbez ◽  
S. Kirchner ◽  
...  

2020 ◽  
Vol 41 (1) ◽  
pp. 363-380 ◽  
Author(s):  
Liqiao Li ◽  
Yan Lin ◽  
Tian Xia ◽  
Yifang Zhu

With the rapid increase in electronic cigarette (e-cig) users worldwide, secondhand exposure to e-cig aerosols has become a serious public health concern. We summarize the evidence on the effects of e-cigs on indoor air quality, chemical compositions of mainstream and secondhand e-cig aerosols, and associated respiratory and cardiovascular effects. The use of e-cigs in indoor environments leads to high levels of fine and ultrafine particles similar to tobacco cigarettes (t-cigs). Concentrations of chemical compounds in e-cig aerosols are generally lower than those in t-cig smoke, but a substantial amount of vaporized propylene glycol, vegetable glycerin, nicotine, and toxic substances, such as aldehydes and heavy metals, has been reported. Exposures to mainstream e-cig aerosols have biologic effects but only limited evidence shows adverse respiratory and cardiovascular effects in humans. Long-term studies are needed to better understand the dosimetry and health effects of exposures to secondhand e-cig aerosols.


2020 ◽  
pp. 1420326X1990021 ◽  
Author(s):  
Ahu Aydogan ◽  
Ryan Cerone

Although well-established technologies can remove certain toxins from indoor environments, methods capable of eliminating all of them do not yet exist. Biological methods, however, which are based on plants and their associated microorganisms, could hold significant promise. To achieve high toxic remediation, utilization of the soil microorganisms in the root zone of the plant is vital. Moreover, evidence suggests that in addition to cleaning the air, plants in indoor environments offer psychological, physiological and cognitive benefits. This paper provides an overview of the effects of plants on indoor air quality on the broader benefits of incorporating vegetation into indoor environments.


1990 ◽  
Vol 6 (5) ◽  
pp. 103-115 ◽  
Author(s):  
H. J. Van De Wiel ◽  
E. Lebret ◽  
W. K. Van Der Lingen ◽  
H. C. Eerens ◽  
L.H. Vaas ◽  
...  

Several national and international health organizations have derived concentration levels below which adverse effects on men are not expected or levels below which the excess risk for individuals is less than a specified value. For every priority pollutant indoor concentrations below this limit are considered “healthy.” The percentage of Dutch homes exceeding such a limit is taken as a measure of indoor air quality for that component. The present and future indoor air quality of the Dutch housing stock is described for fourteen air pollutants. The highest percentages are scored by radon, environmental tobacco smoke, nitrogen dioxide from unvented combustion, and the potential presence of housedust mite and mould allergen in damp houses. Although the trend for all priority pollutants is downward the most serious ones remain high in the coming decades if no additional measures will be instituted.


2018 ◽  
Vol 33 (1) ◽  
pp. 63-76 ◽  
Author(s):  
Harriet Whiley ◽  
Sharyn Gaskin ◽  
Tiffany Schroder ◽  
Kirstin Ross

AbstractConcerns regarding indoor air quality, particularly the presence of fungi and moulds, are increasing. The potential for essential oils to reduce, control or remove fungi, is gaining interest as they are seen as a “natural” alternative to synthetic chemical fungicides. This review examines published research on essential oils as a method of fungal control in indoor environments. It was difficult to compare the relative performances of essential oils due to differences in research methods and reporting languages. In addition, there are limited studies that scale up laboratory results and assess the efficacy of essential oils within building environments. However, generally, there appears to be some evidence to support the essential oils clove oil, tea tree oil, oregano, thyme and lemon as potential antifungal agents. Essential oils from heartwood, marjoram, cinnamon, lemon basil, caraway, bay tree, fir, peppermint, pine, cedar leaf and manuka were identified in at least one study as having antifungal potential. Future studies should focus on comparing the effectiveness of these essential oils against a large number of fungal isolates from indoor environments. Studies will then need to focus on translating these results into realistic application methods, in actual buildings, and assess the potential for long-term antifungal persistence.


Sign in / Sign up

Export Citation Format

Share Document