scholarly journals Analysis of the scope of thermo-modernization for a residential building in order to transform it into a low-energy building

2018 ◽  
Vol 44 ◽  
pp. 00069 ◽  
Author(s):  
Maciej Knapik

The article presents the problem of thermo-modernization and the reduction of energy demand for heating purposes in existing residential buildings. The thermo-modernization process has to adapt the existing building to the standard of a building with low energy demand and applicable regulations. Low-energy constructions are a result of introduction of new solutions in building design process. Their main objective is to achieve a significant reduction in demand for renewable primary energy, necessary to cover the needs of these buildings, mostly related to their heating, ventilation and domestic hot water. The article presents the results of the analysis and calculation of selected thermo-modernization variants. The results showed that thermo-modernization process of existing residential buildings is justified both energetically and economically.

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2436 ◽  
Author(s):  
Julià Coma ◽  
José Miguel Maldonado ◽  
Alvaro de Gracia ◽  
Toni Gimbernat ◽  
Teresa Botargues ◽  
...  

The building sector accounts for one third of the global energy consumption and it is expected to grow in the next decades. This evidence leads researchers, engineers and architects to develop innovative technologies based on renewable energies and to enhance the thermal performance of building envelopes. In this context, the potential applicability and further energy performance analysis of these technologies when implemented into different building typologies and climate conditions are not easily comparable. Although massive information is available in data sources, the lack of standardized methods for data gathering and the non-public availability makes the comparative analyses more difficult. These facts limit the benchmarking of different building energy demand parameters such as space heating, cooling, air conditioning, domestic hot water, lighting and electric appliances. Therefore, the first objective of this study consists in providing a review about the common typologies of residential buildings in Europe from the main data sources. This study contains specific details on their architecture, building envelope, floor space and insulation properties. The second objective consists in performing a cross-country comparison in terms of energy demand for the applications with higher energy requirements in the residential building sector (heating and domestic hot water), as well as their related CO2 emissions. The approach of this comparative analysis is based on the residential building typology developed in TABULA/EPISCOPE projects. This comparative study provides a reference scenario in terms of energy demand and CO2 emissions for residential buildings and allows to evaluate the potential implementation of new supply energy technologies in hot, temperate and cold climate regions. From this study it was also concluded that there is a necessity of a free access database which could gather and classify reliable energy data in buildings.


2020 ◽  
Vol 160 ◽  
pp. 01004 ◽  
Author(s):  
Stanislav Chicherin ◽  
Lyazzat Junussova ◽  
Timur Junussov

Proper adjustment of domestic hot water (DHW) load structure can balance energy demand with the supply. Inefficiency in primary energy use prompted Omsk DH company to be a strong proponent of a flow controller at each substation. Here the return temperature is fixed to the lowest possible value and the supply temperature is solved. Thirty-five design scenarios are defined for each load deviation index with equally distributed outdoor temperature ranging from +8 for the start of a heating season towards extreme load at temperature of -26°C. All the calculation results are listed. If a flow controller is installed, the customers might find it suitable to switch to this type of DHW supply. Considering an option with direct hot water extraction as usual and a flow controller installed, the result indicates that the annual heat consumption will be lower once network temperatures during the fall or spring months are higher. The heat load profiles obtained here may be used as input for a simulation of a DH substation, including a heat pump and a tank for thermal energy storage. This design approach offers a quantitative way of sizing temperature levels in each DH system according to the listed methodology and the designer's preference.


2015 ◽  
Vol 5 (1) ◽  
pp. 37-46
Author(s):  
Ligia Moga ◽  
I. Moga

Abstract Energy efficient design is a high priority in the national energy strategy of European countries considering the latest requirements of the European Directive on the Energy Performance of Buildings. The residential sector is responsible for a significant quantity of energy consumptions from the total amount of consumptions on a worldwide level. In residential building most of the energy consumptions are given mainly by heating, domestic hot water and lighting. Retrofitting the existing building stock offers great opportunities for reducing global energy consumptions and greenhouse gas emissions. The first part of the paper will address the need of thermal and energy retrofit of existing buildings. The second part will provide an overview on how various variables can influence the energy performance of a building that is placed in all four climatic zones from Romania. The paper is useful for specialist and designers from the construction field in understanding that buildings behave differently from the energy point of view in different climatic regions, even if the building characteristic remain the same.


Author(s):  
Robert Staiger

The chapter deals with the green energetic consideration of today's building envelopes for residential and non-residential buildings. It investigates the energetic effects the envelopes have on energy efficiency, energy consumption, material use, sustainable use of resources, lifetime considerations, economic and ecological impact. Today's it is estimated that approximately 30% of the annual primary energy demand for residential and non-residential buildings is needed. Energy resources for heat, electricity, air conditioning and cooling purposes, fossil fuels in form of gas and liquid are predominantly used.


2013 ◽  
Vol 291-294 ◽  
pp. 976-979
Author(s):  
Hui Xing Li ◽  
Wei Wang ◽  
Guo Hui Feng

Green residential building is energy conservation, environmental protection, healthy and comfortable and stress efficiency. Green building respects the local natural and humanities, climate. Adjust measures to local conditions, use local materials, so there is no definite construction patterns and rules. In this paper a green residential buildings from Shenyang, focus on the analysis of the well insulated building envelope, radiant floor heating system with control system, solar hot water system in the building. At the same time, analysis of the energy saving technology can reduce energy consumption and CO2 emissions compare with "Residential building energy saving design standards "at Liaoning area. The project gives some experience to other designers in the process of green buildings design and promotes it constructed in the northeastern regions.


2018 ◽  
Vol 30 ◽  
pp. 03001
Author(s):  
Maciej Knapik

The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3232
Author(s):  
Dorota Chwieduk ◽  
Michał Chwieduk

The paper shows how difficult it is to prove technically that a building really is both low energy and smart, and that all aspects of energy efficiency have been treated equally. Regulations connected to the determination of the energy performance of residential buildings take into account only space and hot water heating energy consumption and define the indices of maximal primary energy consumption, but not energy needs based on the architecture of the building. A single family house designed and constructed as a low energy solar house in Warsaw’s suburbs is considered. Availability of solar energy and its influence on the architecture of the house is analyzed. A specific solar passive architectural concept with solar southern and cold northern buffer spaces incorporated into the interior of the house is presented. Parameters of the building’s structure, construction materials, as well as operation parameters of equipment and heating systems based on active use of solar energy, ground energy (via a heat pump) and waste heat from a ventilation system are described. Results of calculations give values of final and primary energy consumption index levels of 11.58 kWh/m2 and 25.77 kWh/m2, respectively. However, the official methodology for determination of energy performance does not allow for presenting how energy efficient and smart the building really is.


Author(s):  
Robert Staiger

The chapter deals with the green energetic consideration of today's building envelopes for residential and non-residential buildings. It investigates the energetic effects the envelopes have on energy efficiency, energy consumption, material use, sustainable use of resources, lifetime considerations, economic and ecological impact. Today's it is estimated that approximately 30% of the annual primary energy demand for residential and non-residential buildings is needed. Energy resources for heat, electricity, air conditioning and cooling purposes, fossil fuels in form of gas and liquid are predominantly used.


Author(s):  
Robert Staiger

The chapter deals with the green energetic consideration of today's building envelopes for residential and non-residential buildings. It investigates the energetic effects the envelopes have on energy efficiency, energy consumption, material use, sustainable use of resources, lifetime considerations, economic and ecological impact. Today's it is estimated that approximately 30% of the annual primary energy demand for residential and non-residential buildings is needed. Energy resources for heat, electricity, air conditioning and cooling purposes, fossil fuels in form of gas and liquid are predominantly used.


2013 ◽  
Vol 689 ◽  
pp. 114-118
Author(s):  
Tejwant Singh Brar ◽  
M. Arif Kamal

Large part of North–Western India has Hot Arid climate which is characterised by hot summers, humid monsoon, and extremely cold winters, and also there is a difference in daily maximum and mean temperatures of as much as 15 to 20°C and this results in high energy demand to achieve comfort conditions. Green buildings often claim that the reduced energy use during operation of the low energy. This paper gives categorical analysis of the technologies available for Low energy and green architecture and emphasizes the need to integrate both in residential buildings to lower the energy use in operation during the lifetime in a residential building in hot arid climate.


Sign in / Sign up

Export Citation Format

Share Document