scholarly journals Advanced Control of a District Heating System with High Residential Domestic Hot Water Demand

2020 ◽  
Vol 160 ◽  
pp. 01004 ◽  
Author(s):  
Stanislav Chicherin ◽  
Lyazzat Junussova ◽  
Timur Junussov

Proper adjustment of domestic hot water (DHW) load structure can balance energy demand with the supply. Inefficiency in primary energy use prompted Omsk DH company to be a strong proponent of a flow controller at each substation. Here the return temperature is fixed to the lowest possible value and the supply temperature is solved. Thirty-five design scenarios are defined for each load deviation index with equally distributed outdoor temperature ranging from +8 for the start of a heating season towards extreme load at temperature of -26°C. All the calculation results are listed. If a flow controller is installed, the customers might find it suitable to switch to this type of DHW supply. Considering an option with direct hot water extraction as usual and a flow controller installed, the result indicates that the annual heat consumption will be lower once network temperatures during the fall or spring months are higher. The heat load profiles obtained here may be used as input for a simulation of a DH substation, including a heat pump and a tank for thermal energy storage. This design approach offers a quantitative way of sizing temperature levels in each DH system according to the listed methodology and the designer's preference.

2018 ◽  
Vol 30 ◽  
pp. 03001
Author(s):  
Maciej Knapik

The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4694
Author(s):  
Tina Lidberg ◽  
Thomas Olofsson ◽  
Louise Ödlund

When buildings become more energy effective, the temperature levels of district heating systems need to be lower to decrease the losses from the distribution system and to keep district heating a competitive alternative on the heating market. For this reason, buildings that are refurbished need to be adapted to suit low-temperature district heating. The aim of this paper is to examine whether four different energy refurbishment packages (ERPs) can be used for lowering the temperature need of a multi-family buildings space heating and domestic hot water (DHW) system as well as to analyse the impact of the DHW circulation system on the return temperature. The results show that for all ERPs examined in this study, the space heating supply temperature agreed well with the temperature levels of a low-temperature district heating system. The results show that the temperature need of the DHW system will determine the supply temperature of the district heating system. In addition, the amount of days with heating demand decreases for all ERPs, which further increases the influence of the DHW system on the district heating system. In conclusion, the DHW system needs to be improved to enable the temperature levels of a low-temperature district heating system.


2012 ◽  
Vol 5 (4) ◽  
pp. 507-512 ◽  
Author(s):  
Giedrius Šiupšinskas ◽  
Solveiga Adomėnaitė

The article analyses the possibilities of solar collectors used for a domestic hot water system and installed on the roofs of modernized multi-storey buildings under the existing climate conditions. A number of combinations of flat plate and vacuum solar collectors with accumulation tank systems of various sizes have been examined. Heat from the district heating system is used as an additional heat source for preparing domestic hot water. The paper compares calculation results of energy and economy regarding the combinations of flat plate and vacuum solar collectors and the size of the accumulation tank. The influence of variations in the main indicators on the final economic results has also been evaluated. Research has been supported applying EC FP7 CONCERTO program (‘‘Sustainable Zero Carbon ECO-Town Developments Improving Quality of Life across EU - ECO-Life’’ (ECO-Life Project) Contract No. TREN/FP7EN/239497/”ECOLIFE”). Santrauka Straipsnyje analizuojamos saulės kolektorių, skirtų karšto vandentiekio sistemai ant modernizuojamų daugiabučių namų stogų įrengti esamomis klimatinėmis sąlygomis galimybės. Nagrinėjamos įvairaus dydžio plokščiųjų ir vakuuminių saulės kolektorių su akumuliacinėmis talpyklomis sistemų kombinacijos. Kaip papildomas šilumos šaltinis karštam vandeniui pašildyti naudojama iš centralizuotų šilumos tinklų tiekiama šiluma. Lyginami plokščiųjų, vakuuminių saulės kolektorių ir akumuliacinio bako dydžio kombinacijų energinių ir ekonominių skaičiavimų rezultatai. Įvertinama kai kurių esminių rodiklių pokyčių įtaka galutiniams ekonominiams rodikliams.


Author(s):  
Jaspreet S. Nijjar ◽  
Alan S. Fung ◽  
Larry Hughes ◽  
Hessam Taherian

There are several benefits to district heating systems. The system design requires knowledge of community peak heating load and annual heating energy requirements. For this purpose, a residential energy model was developed using several energy usage databases. Hourly, peak, and annual heating demands were estimated by simulating 15 archetype houses using an hour-by-hour building simulation program, ENERPASS. Estimated heating profiles from model houses were used to design a district heating system for a hypothetical rural community in Nova Scotia. The findings show that building simulation is a very flexible and valuable tool in identifying the required peak and hourly energy demand of a community for the design of district energy system, and biomass district heating system can reduce community greenhouse gas emissions.


2019 ◽  
Vol 111 ◽  
pp. 06009
Author(s):  
Tymofii Tereshchenko, ◽  
Dmytro Ivanko ◽  
Natasa Nord ◽  
Igor Sartori

Widespread introduction of low energy buildings (LEBs), passive houses, and zero emission buildings (ZEBs) are national target in Norway. In order to achieve better energy performance in these types of buildings and successfully integrate them in energy system, reliable planning and prediction techniques for heat energy use are required. However, the issue of energy planning in LEBs currently remains challenging for district heating companies. This article proposed an improved methodology for planning and analysis of domestic hot water and heating energy use in LEBs based on energy signature method. The methodology was tested on a passive school in Oslo, Norway. In order to divide energy signature curve on temperature dependent and independent parts, it was proposed to use piecewise regression. Each of these parts were analyzed separately. The problem of dealing with outliers and selection of the factors that had impact of energy was considered. For temperature dependent part, the different methods of modelling were compared by statistical criteria. The investigation showed that linear multiple regression model resulted in better accuracy in the prediction than SVM, PLS, and LASSO models. In order to explain temperature independent part of energy signature the hourly profiles of energy use were developed.


2021 ◽  
Vol XXVIII (4) ◽  
pp. 121-132
Author(s):  
Corina Chelmenciuc ◽  
◽  
Constantin Borosan ◽  
Vadim Lisnic ◽  
◽  
...  

Nowadays, both globally and in Europe, and nationally, there is a tendency to promote district heating systems to the detriment of individual ones to heat dwellings in urban areas. The need to develop the DHSs is indisputable considering the topicality of global warming, the depletion of the primary energy resources and the energy efficiency trend. This article presents the method of applying regression analysis in feasibility studies for the projects of new heat consumers connection to the district heating system (hereinafter – DHS) or previously disconnected consumers reconnection via individual heating points (hereinafter – IHP) when the necessary investments are to be borne by the DHS operator, and the thermal energy is produced in cogeneration. At the same time, it is demonstrated that there is a direct and linear correlation between fuel consumption and electricity and heat produced in cogeneration at CHP plant.


Vestnik MGSU ◽  
2019 ◽  
pp. 748-755 ◽  
Author(s):  
Saule K. Abildinova ◽  
Stanislav V. Chicherin

Introduction. The purpose of this investigation is to show what changes introduced in the mathematical model of a district heating system are capable of considerable improving the convergence of simulation results and actual data. The study evaluates the work of heating supply establishments with their customers as well as analysis of the ways of enhancing pump equipment efficiency that allows saving electric energy or increasing output at the same energy consumption. Materials and methods. Engineering acceptance of newly introduced and reconstructed facilities is conducted, heat loads are corrected, disconnections and recurrent connections of indebted consumers are carried out. Studying data submitted by a local heat supply establishment shows that pump seals made from iron and steel are subject accelerated wear in the course of operation. Results. Three variants of the problem solution are suggested: making seals from bronze or stainless steel, prevention of unjustified increase of seal clearances as well as using labyrinth pump seals. This will allow increasing pump equipment efficiency by 5 to 7 % and save about 2 × 105 kW∙h of electrical energy for every pump or increase of output at the same energy consumption. Taking into account that a pump station is a part of the district heating system and unmachined inner surfaces of the pumps have a significant roughness, grinding of these surfaces can improve their hydraulic characteristics of the pumps. In the scope of the suggested method, the entire district heating system is considered not in the situation when actual load is equal to the sum of all the design loads and the pump equipment has manufacturer’s parameters, but accounting actual loads and characteristics. Conclusions. Mathematical model of district heating system heating and hydraulic mode that takes issues mentioned above into consideration would allow simulating joint operation of the heating and hot water supply systems at transient operation modes with higher accuracy.


2019 ◽  
Vol 112 ◽  
pp. 02006
Author(s):  
Viacheslav Antonenko ◽  
Sofiia Levinska

Residential sector plays a decisive role in the bioenergy sector growth in Ukraine. Larger half of biomass used by households comes from so-called self-production, which is problematic for the statistical monitoring. State Statistics do not publish detailed fuel mix reports on regional level. In this article we are providing a detailed data on fuel mix used by the households at regional level during 2007– 2016 and determine the biofuel self-production amount. The facilities that are direct emission sources and are the final fuel consumers, including individual heating/hot water boilers/stoves out of district heating system and individual cookers are considered in detail.


Sign in / Sign up

Export Citation Format

Share Document