scholarly journals Prediction of Horizontal Axis Wind Turbine Rotor Performance: Bond Graph Approach

2018 ◽  
Vol 51 ◽  
pp. 01005 ◽  
Author(s):  
Naima Jouilel ◽  
Mohammed Radouani ◽  
Benaissa El Fahime

Modeling wind energy conversion systems is a difficult task that requires the use of a unified language gathering all aspect of energies involved such as kinetic energy, mechanical energy, and electrical energy. Bond Graph methodology is an appropriate tool to analyze wind turbine dynamic behavior since the whole system is modelled in the same frame. Herein, a methodology for HAWT's rotor modeling is proposed based on Bond Graph, aerodynamic laws and Rayleigh Beam theory. It takes into consideration the profile, chord, and twist change along the blade. The model is validated using 20-Sim software and then compared to other models from literature. Simulation results show a better value of power coefficient in comparison with works using the same tools.

2018 ◽  
Vol 51 ◽  
pp. 01005
Author(s):  
Naima Jouilel ◽  
Mohammed Radouani ◽  
Benaissa El Fahime

Modeling wind energy conversion systems is a difficult task that requires the use of a unified language gathering all aspect of energies involved such as kinetic energy, mechanical energy, and electrical energy. Bond Graph methodology is an appropriate tool to analyze wind turbine dynamic behavior since the whole system is modelled in the same frame. Herein, a methodology for HAWT's rotor modeling is proposed based on Bond Graph, aerodynamic laws and Rayleigh Beam theory. It takes into consideration the profile, chord, and twist change along the blade. The model is validated using 20-Sim software and then compared to other models from literature. Simulation results show a better value of power coefficient in comparison with works using the same tools.


2014 ◽  
Vol 4 (2) ◽  
Author(s):  
I Kade Wiratama ◽  
Made Mara ◽  
L. Edsona Furqan Prina

The willingness of electrical energy is one energy system has a very important role in the economic development of a country's survival. As one energy source (wind) can be converted into electrical energy with the use of a horizontal axis wind turbine. Wind Energy Conversion Systems (WECS) that we know are two wind turbines in general, ie the horizontal axis wind turbine and vertical axis wind turbine is one type of renewable energy use wind as an energy generator. The purpose of this study was to determine the effect of the number of blade and the radius chord of rotation (n), Torque (T), Turbine Power (P), Power Coefficient (CP) and Tip Speed Ratio (λ) generated by the horizontal axis wind turbine with form linear taper. The results show that by at the maximum radius of the chord R3 the number blade 4 is at rotation = 302.700 rpm, Pturbine = 7.765 watt, Torque = 0.245 Nm, λ = 3.168 and Cp = 0.403 or 40.3%.


2020 ◽  
Vol 9 (1) ◽  
pp. 122-139
Author(s):  
Abhishek Choubey ◽  
Prashant Baredar ◽  
Neha Choubey

The country or region where energy production is based on imported coal or oil will become more self-sufficient by using alternatives such as wind power. Electricity produced by the wind produces no CO2 emissions and therefore does not contribute to the greenhouse effect. Wind energy is relatively labour intensive and thus creates many jobs. Wind energy is the major alternative of conventional energy resources. A wind turbine transforms the kinetic energy in the wind to mechanical energy in a shaft and finally into electrical energy in a generator. The turbine blade is the most important component of any wind turbine. In this article is considered the single airfoil National Advisory Committee for Aeronautics (NACA) 0018 and a computational fluid dynamics (CFD) analysis is done at different blade angles 0º, 10º, 15º, and 30º with a wind velocity of 4 m/s. The analysis results show that a blade angle of 10º gives the best possible power and pressure and velocity distributions are plotted for every case.


2021 ◽  
Vol 2 (1) ◽  
pp. 347-357
Author(s):  
Syam Widiyanto ◽  
Sasongko Pramonohadi ◽  
Mohammad Kholid Ridwan

The horizontal axis wind turbine (HAWT) design with low wind speed requires blade geometry selection. The analysis uses the potential flow panel method and the integral boundary layer formulation to analyze wind flow around the airfoil. The blade design with the blade element momentum (BEM) theory has an aerodynamic coefficient value along the blade. Power wind calculates to model the wind shear pressure at each blade. This research aims to determine the wind turbine rotor based on the performance, including the power coefficient, tip speed ratio, power, and rpm. The simulation uses an airfoil NACA 4412 which has optimal coefficient lift (Cl) = 1.92 at 190 pitch of angle, coefficient drag (Cd) = 0.0635 at 130 pitch angle and Cl / Cd = 155 at tilt angle = 40. Five models of 2.5 m diameter blades with different angles for each chord. The test results show that the change in the speed ratio affects the power coefficient so that the optimal power coefficient on NACA 4412 in experiment 5 is 0.56, and change in rotation per minute affects the output power so that the rotation per minute and the optimal power in experiment 4 with a value of 374 rpm and 553 W.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Firman Aryanto ◽  
Made Mara ◽  
Made Nuarsa

The wind turbine is a device that converts wind energy into mechanical energy and then converted into electrical energy through a generator. Horizontal axis wind turbines can increase the efficiency to get the maximum power coefficient. One was using the blade numerous. Maximum efisiensi system will increase the number of watts (power) generated so as to obtain a certain number of watts by simply using the number of windmills lessThe object of this research is the performance testing horizontal axis wind turbine with wind speed variation and variation in terms of the number of blade Efisiensi system (𝜂 )  and Tip Speed Ratio (TSR). Research conducted with the wind coming from the source to the Wind Tunnel fan to direct wind. Wind speed is used there are three variations of the 3 m/s, 3.5 m/s, and 4 m/s and varying the amount of blade that is 3, 4, 5 and 6 blade.The results showed that the best 𝜂  values obtained at a maximum wind speed of 4 m / s and the number of blade 5 with a value of 3.07% 𝜂, whereas 𝜂 smallest value obtained at wind speeds of 3 m/s and the number of blade 3 that the value of 0.05% 𝜂. For TSR maximum value at a maximum speed of 4 m/s occurred in the number of blade 5 is equal to λ = 2.11, while the lowest value at wind speeds of 3 m/s resulting in blade number 3 is equal to λ = 1.49.


Author(s):  
Abhishek Choubey

Pollution free power production, quick installation and commissioning capability, less operation and maintenance cost and taking benefit of by means of free and renewable energies are all advantages of using wind turbines as an power generators. Along with these advantages, the main drawback of this source is the conditional nature of wind flow. Therefore, using reliable and efficient apparatus is necessary in order to get as much as energy from wind during the limited period of time that it flows strongly. Wind power is the fastest increasing renewable energy resource and wind power penetration in power systems increases at a significant rate. The high access of wind power into power systems in the present and near future will have several impacts on their planning and operation. A wind turbine transforms the kinetic energy in the wind to mechanical energy in a shaft and ultimately into electrical energy in a generator. Turbine blade is the mainly important part of any wind turbine. In this paper we consider single airfoil NACA 0018 and done CFD analysis at different blade angles 00,100,150 and 300 with constant wind velocity of 6 m/s. The analysis results show that blade angle 15º gives best possible power.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Teuku Multazam ◽  
Andi Mulkan

<p class="IJOPCMKeywards"><span lang="EN-US">Wind power is dominant energy converted into electricity through wind turbine generators used in wind energy conversion systems. Technological developments produce various types of generators for use in wind power plants of various scales. Permanent magnet generator (PMG) has advantage of being able to produce electrical energy of 500 watts at rotation 600 rotate per minute with an input wind speed of 2.5-12 m/s. The potential for average wind speed throughout the year in Aceh is around 1.5-6.5 m/s cannot be generate electric power because mechanical energy from turbine rotation is not sufficient to meet the minimum demand for RPM generators. The design of a horizontal axis wind turbine (HAWT) with Air Foil Naca 2410 is used to increase the efficiency of the turbine rotation. It’s influenced by variations in the number of blades and material used. Stages of simulation are prioritized to get efficient variations of the number of blades and the most effective material testing is performed. The results showed that variation of the axis of a three-blade wind turbine type has a higher coefficient of power that is 50 percent compared the other, the type of material wind turbines made from pinus more optimal than fiberglass</span><span lang="EN-US">.</span></p>


KURVATEK ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 13-20
Author(s):  
Yosua Heru Irawan ◽  
M Agung Bramantya

Wind energy is one form of renewable energy in Indonesia and its potential is very large to be utilized. Wind energy can be converted into electrical energy using wind turbines. Horizontal axis wind turbine will be the subject of this study, where the wind turbine model will be given additional diffuser. In addition, this wind turbine model will also be developed from a single rotor wind turbine into a double rotor wind turbine with opposite rotation direction or counter rotation. This research uses numerical simulation method using ANSYS Fluent software to know wind turbine performance. Simulations were performed at wind speeds of 3 m/s, with the ratio of the length and diameter of the inlet diffuser 0.5; 1; 1.5; 2; and 2.5. Based on the simulation results, it can be seen that the greater the ratio of inlet length and diameter, the mechanical power generated by the wind turbine rotor is greater. Double rotor wind turbine with a length ratio and 2.5 inlet diameter produces the highest performance on the front rotor and rotor rear. The greater the ratio of the length and diameter of the inlet, the mechanical power generated by the front rotor and the rotor inside the diffuser also increases.


2020 ◽  
Vol 37 ◽  
pp. 63-71
Author(s):  
Yui-Chuin Shiah ◽  
Chia Hsiang Chang ◽  
Yu-Jen Chen ◽  
Ankam Vinod Kumar Reddy

ABSTRACT Generally, the environmental wind speeds in urban areas are relatively low due to clustered buildings. At low wind speeds, an aerodynamic stall occurs near the blade roots of a horizontal axis wind turbine (HAWT), leading to decay of the power coefficient. The research targets to design canards with optimal parameters for a small-scale HAWT system operated at variable rotational speeds. The design was to enhance the performance by delaying the aerodynamic stall near blade roots of the HAWT to be operated at low wind speeds. For the optimal design of canards, flow fields of the sample blades with and without canards were both simulated and compared with the experimental data. With the verification of our simulations, Taguchi analyses were performed to seek the optimum parameters of canards. This study revealed that the peak performance of the optimized canard system operated at 540 rpm might be improved by ∼35%.


Sign in / Sign up

Export Citation Format

Share Document