scholarly journals PENGARUH KECEPATAN ANGIN DAN VARIASI JUMLAH SUDU TERHADAP UNJUK KERJA TURBIN ANGIN POROS HORIZONTAL

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Firman Aryanto ◽  
Made Mara ◽  
Made Nuarsa

The wind turbine is a device that converts wind energy into mechanical energy and then converted into electrical energy through a generator. Horizontal axis wind turbines can increase the efficiency to get the maximum power coefficient. One was using the blade numerous. Maximum efisiensi system will increase the number of watts (power) generated so as to obtain a certain number of watts by simply using the number of windmills lessThe object of this research is the performance testing horizontal axis wind turbine with wind speed variation and variation in terms of the number of blade Efisiensi system (𝜂 )  and Tip Speed Ratio (TSR). Research conducted with the wind coming from the source to the Wind Tunnel fan to direct wind. Wind speed is used there are three variations of the 3 m/s, 3.5 m/s, and 4 m/s and varying the amount of blade that is 3, 4, 5 and 6 blade.The results showed that the best 𝜂  values obtained at a maximum wind speed of 4 m / s and the number of blade 5 with a value of 3.07% 𝜂, whereas 𝜂 smallest value obtained at wind speeds of 3 m/s and the number of blade 3 that the value of 0.05% 𝜂. For TSR maximum value at a maximum speed of 4 m/s occurred in the number of blade 5 is equal to λ = 2.11, while the lowest value at wind speeds of 3 m/s resulting in blade number 3 is equal to λ = 1.49.

Author(s):  
A. R. Krishnanunni ◽  
N. Datta ◽  
H. S. Chambhare ◽  
D. Swaroop

Abstract The basic design and blade structural analysis of a 250 W rooftop-mounted horizontal-axis wind turbine for low wind speeds is presented. A simplified non-dimensional design is first undertaken to optimize the aerodynamic performance. The non-dimensional power curve vs. the design tip speed ratio is computed with the open-source wind turbine design software QBlade. SD7062 airfoil is chosen for the blade section; and its aerodynamic efficiency is obtained for various angles of attack using XFLR5. The design process also gives the optimal chord length and pitch distribution, leading to the blade geometry. The 22-month weather data at the site has been analyzed to obtain the best-fit Weibull distribution. The blade sizing is based on the maximum power coefficient before the stall regulation happens. An attempt is made to enhance the power capture by using a concentrator, whose aerodynamic efficacy is analyzed. The blades are fabricated from Glass Fiber Reinforced Plastic, which reduces both weight and cost. The configuration for the laminate is finalized after several bending and tensile tests of five distinct GFRP samples. This is followed by the structural analysis of the blade. The root stresses and tip deflection are analyzed for extreme-wind conditions, along with the free vibration frequencies.


2020 ◽  
Vol 37 ◽  
pp. 63-71
Author(s):  
Yui-Chuin Shiah ◽  
Chia Hsiang Chang ◽  
Yu-Jen Chen ◽  
Ankam Vinod Kumar Reddy

ABSTRACT Generally, the environmental wind speeds in urban areas are relatively low due to clustered buildings. At low wind speeds, an aerodynamic stall occurs near the blade roots of a horizontal axis wind turbine (HAWT), leading to decay of the power coefficient. The research targets to design canards with optimal parameters for a small-scale HAWT system operated at variable rotational speeds. The design was to enhance the performance by delaying the aerodynamic stall near blade roots of the HAWT to be operated at low wind speeds. For the optimal design of canards, flow fields of the sample blades with and without canards were both simulated and compared with the experimental data. With the verification of our simulations, Taguchi analyses were performed to seek the optimum parameters of canards. This study revealed that the peak performance of the optimized canard system operated at 540 rpm might be improved by ∼35%.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2649 ◽  
Author(s):  
Artur Bugała ◽  
Olga Roszyk

This paper presents the results of the computational fluid dynamics (CFD) simulation of the airflow for a 300 W horizontal axis wind turbine, using additional structural elements which modify the original shape of the rotor in the form of multi-shaped bowls which change the airflow distribution. A three-dimensional CAD model of the tested wind turbine was presented, with three variants subjected to simulation: a basic wind turbine without the element that modifies the airflow distribution, a turbine with a plano-convex bowl, and a turbine with a centrally convex bowl, with the hyperbolic disappearance of convexity as the radius of the rotor increases. The momentary value of wind speed, recorded at measuring points located in the plane of wind turbine blades, demonstrated an increase when compared to the base model by 35% for the wind turbine with the plano-convex bowl, for the wind speed of 5 m/s, and 31.3% and 49% for the higher approaching wind speed, for the plano-convex bowl and centrally convex bowl, respectively. The centrally convex bowl seems to be more appropriate for higher approaching wind speeds. An increase in wind turbine efficiency, described by the power coefficient, for solutions with aerodynamic bowls was observed.


Author(s):  
Ohad Gur ◽  
Aviv Rosen

The optimal aerodynamic design of Horizontal Axis Wind Turbine (HAWT) is investigated. The Blade-element/Momentum model is used for the aerodynamic analysis. In the first part of the paper a simple design method is derived, where the turbine blade is optimized for operation at a specific wind speed. Results of this simple optimization are presented and discussed. Besides being optimized for operation at a specific wind speed, without considering operation at other wind speeds, the simple model is also limited in the choice of design goals (cost functions), design variables and constraints. In the second part of the paper a comprehensive design method that is based on a mixed numerical optimization strategy, is presented. This method can handle almost any combination of: design goal, design variables, and constraints. Results of this method are presented, compared with the results of the simple optimization, and discussed.


Author(s):  
Manoj Kumar Chaudhary ◽  
◽  
S. Prakash ◽  

In this research work, the investigation and optimization of small horizontal axis wind turbine blade at low wind speed is pursued. The experimental blades were developed using the 3D printing additive manufacturing technique. The airfoils E210, NACA2412, S1223, SG6043, E216, NACA4415, SD7080, SD7033, S1210 and MAF were tested at the wind speed of 2-6 m/s. The airfoils and optimum blade geometry were investigated with the aid of the Xfoil software at Reynolds number of 100,000. The initial investigation range included tip speed ratios from 3 to 10, solidity from 0.0431 – 0.1181 and angle of attacks from 2o to 20o. Later on these parameters were varied in MATLAB and Xfoil software for optimization and investigation of the power coefficient, lift coefficient, drag coefficient and lift to drag ratio. The cut-in wind speed of the rotors was 2 and 2.5 m/s with the winglet-equipped blades and without winglets. It was found that the E210, SG6043, E216 NACA4415 and MAF airfoil displayed better performance than the NACA 2412, S1223, SD7080, S1210 & SD7003 for the geometry optimized for the operating conditions and manufacturing method described.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Süleyman Tekşin ◽  
Mert Kurt

A wind turbine-generator system; Parameters such as wind speed, turbine blade diameter, number of blades, turbine height, tip speed ratio and solidity ratio are affected. In this study, horizontal axis wind turbine with diameter of 130 cm and blade solidity ratio values of 7%, 8,6% and 9,8% were constructed and the tests were made according to different blade speed ratios. The required blades were obtained from PVC pipes of different diameters. The experimental study was actualized in Erciyes University Mechanical Engineering, Engines Laboratory. For each profile, blade rotational speeds and wind speeds at various distances have been studied. It has been determined that the wind speed is reduced by the distance difference and accordingly the number of blade speed is decreased visibly. In the wing profiles with different blade solidity ratios resulting from the work done, the wing structure with the solidity ratio of 8.6% gave the best performance. CL and CD coefficients of the profiled specimens were analyzed by FLUENTTM, a program of computational fluid dynamics. One of the factors that should be taken into consideration in the production of wind turbines is the blade solidity ratio.


2021 ◽  
Vol 2 (2) ◽  
pp. 51
Author(s):  
Santiago Sánchez ◽  
Victor Hidalgo ◽  
Martin Velasco ◽  
Diana Puga ◽  
P. Amparo López-Jiménez ◽  
...  

<p class="JAREAbstract">The present paper focuses on the selection of parameters that maximize electrical energy production of a horizontal axis wind turbine using Python programming language. The study takes as reference turbines of Villonaco wind field in Ecuador. For this aim, the Blade Element Momentum (BEM) theory was implemented, to define rotor geometry and power curve. Furthermore, wind speeds were analyzed using the Weibull probability distribution and the most probable speed was 10.50 m/s. The results were compared with mean annual energy production of a Villonaco’s wind turbine to validate the model. Turbine height, rated wind speed and rotor radius were the selected parameters to determine the influence in generated energy. Individual increment in rotor radius and rated wind speed cause a significant increase in energy produced. While the increment in turbine’s height reduces energy generated by 0.88%.</p>


2014 ◽  
Vol 4 (2) ◽  
Author(s):  
I Kade Wiratama ◽  
Made Mara ◽  
L. Edsona Furqan Prina

The willingness of electrical energy is one energy system has a very important role in the economic development of a country's survival. As one energy source (wind) can be converted into electrical energy with the use of a horizontal axis wind turbine. Wind Energy Conversion Systems (WECS) that we know are two wind turbines in general, ie the horizontal axis wind turbine and vertical axis wind turbine is one type of renewable energy use wind as an energy generator. The purpose of this study was to determine the effect of the number of blade and the radius chord of rotation (n), Torque (T), Turbine Power (P), Power Coefficient (CP) and Tip Speed Ratio (λ) generated by the horizontal axis wind turbine with form linear taper. The results show that by at the maximum radius of the chord R3 the number blade 4 is at rotation = 302.700 rpm, Pturbine = 7.765 watt, Torque = 0.245 Nm, λ = 3.168 and Cp = 0.403 or 40.3%.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Osarobo Ighodaro ◽  
David Akhihiero

Abstract Wind energy is increasingly becoming a major discussion amongst renewable energy sources due to its sustainability, reduced impact on the environment, and being significantly cheaper than conventional fossil fuels. Researchers have been particularly concerned with studying improved design and optimization using computational technique and experimentation. This research aims at designing blades for a small horizontal axis wind turbine for low Reynolds number using blade element momentum theory and using computational fluid dynamics (cfd) and experiment to analyze its performance. Two airfoils (SG6050 and SG6043) were selected for different regions of the blade span. Four turbulent models were used in predicting its performance. The performance was analyzed for wind speeds between 2 m/s and 7 m/s. Studies showed that the blade is capable of generating power up to 241 W with a power coefficient of 34.3% at a speed of 6 m/s. The computed power coefficient is in good agreement with experimental results of 33.7%.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Ali M. Abdelsalam ◽  
W. A. El-Askary ◽  
M. A. Kotb ◽  
I. M. Sakr

Abstract This article aims to study numerically the effect of curvature of linear blade profile on the performance of small-scale horizontal axis wind turbine (SSHAWT). Rotors with two curvature types, f forward angles 5 deg, 10 deg, 15 deg, 20 deg, 30 deg, and 45 deg and backward angles −5 deg, −10 deg, and −15 deg, are investigated. Furthermore, three curvature positions of r/R = 0.8, 0.9, and 0.95 are studied. The numerical simulations are performed on rotors of radius 0.5 m at different wind speeds. The results are compared with straight rotor of linear profiles of chord and twist, which is considered as base rotor. It is found that the rotor with forward curvature of 5 deg and r/R = 0.9 has the highest power coefficient compared with the other rotors. At the peak performance, the proposed rotor reduces the axial thrust by about 12.5% compared with the base rotor. The flow behavior represented by the streamlines contours is also discussed. In such case, the separation approximately disappeared for the tip speed ratios of 5 and 6, which is responsible for the performance peak.


Sign in / Sign up

Export Citation Format

Share Document