scholarly journals Performance Analysis of Small Horizontal Axis Wind Turbine with Airfoil NACA 4412

2021 ◽  
Vol 2 (1) ◽  
pp. 347-357
Author(s):  
Syam Widiyanto ◽  
Sasongko Pramonohadi ◽  
Mohammad Kholid Ridwan

The horizontal axis wind turbine (HAWT) design with low wind speed requires blade geometry selection. The analysis uses the potential flow panel method and the integral boundary layer formulation to analyze wind flow around the airfoil. The blade design with the blade element momentum (BEM) theory has an aerodynamic coefficient value along the blade. Power wind calculates to model the wind shear pressure at each blade. This research aims to determine the wind turbine rotor based on the performance, including the power coefficient, tip speed ratio, power, and rpm. The simulation uses an airfoil NACA 4412 which has optimal coefficient lift (Cl) = 1.92 at 190 pitch of angle, coefficient drag (Cd) = 0.0635 at 130 pitch angle and Cl / Cd = 155 at tilt angle = 40. Five models of 2.5 m diameter blades with different angles for each chord. The test results show that the change in the speed ratio affects the power coefficient so that the optimal power coefficient on NACA 4412 in experiment 5 is 0.56, and change in rotation per minute affects the output power so that the rotation per minute and the optimal power in experiment 4 with a value of 374 rpm and 553 W.

2014 ◽  
Vol 4 (2) ◽  
Author(s):  
I Kade Wiratama ◽  
Made Mara ◽  
L. Edsona Furqan Prina

The willingness of electrical energy is one energy system has a very important role in the economic development of a country's survival. As one energy source (wind) can be converted into electrical energy with the use of a horizontal axis wind turbine. Wind Energy Conversion Systems (WECS) that we know are two wind turbines in general, ie the horizontal axis wind turbine and vertical axis wind turbine is one type of renewable energy use wind as an energy generator. The purpose of this study was to determine the effect of the number of blade and the radius chord of rotation (n), Torque (T), Turbine Power (P), Power Coefficient (CP) and Tip Speed Ratio (λ) generated by the horizontal axis wind turbine with form linear taper. The results show that by at the maximum radius of the chord R3 the number blade 4 is at rotation = 302.700 rpm, Pturbine = 7.765 watt, Torque = 0.245 Nm, λ = 3.168 and Cp = 0.403 or 40.3%.


2014 ◽  
Vol 1079-1080 ◽  
pp. 543-546 ◽  
Author(s):  
Zhi Kui Wang ◽  
Yi Bao Chen ◽  
Gwo Chung Tsai

The wind turbines have gained a wide range of applications in Renewable Energy Sources (RES) by virtue of its dominant advantages, and it has achieved almost the state-of-the-art from the engineering point of view. Nevertheless, the starting behavior which plays a prominent role in wind power generation has achieved few studies up to this moment. We conducted this analysis of a micro horizontal axis wind turbine (MHAWT) on its starting behavior to give insight into its start-up torque as well as its start-up speed on an assumption that it is rigid body, and some relative simplification on its structure are adopted meanwhile. The wind turbine's power coefficient CP, tip-speed-ratio l along with torque coefficient CT were taken into consideration and discussed to a large extent in order to having a relative clear cognition of its operational characteristics.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 18 ◽  
Author(s):  
Hani Muhsen ◽  
Wael Al-Kouz ◽  
Waqar Khan

This work aims at designing and optimizing the performance of a small Horizontal-Axis-Wind-Turbine to obtain a power coefficient (CP) higher than 40% at a low wind speed of 5 m/s. Two symmetric in shape airfoils were used to get the final optimized airfoil. The main objective is to optimize the blade parameters that influence the design of the blade since the small turbines are prone to show low performance due to the low Reynolds number as a result of the small size of the rotor and the low wind speed. Therefore, the optimization process will select different airfoils and extract their performance at the design conditions to find the best sections which form the optimal design of the blade. The sections of the blade in the final version mainly consist of two different sections belong to S1210 and S1223 airfoils. The optimization process goes further by investigating the performance of the final design, and it employs the blade element momentum theory to enhance the design. Finally, the rotor-design was obtained, which consists of three blades with a diameter of 4 m, a hub of 20 cm radius, a tip-speed ratio of 6.5 and can obtain about 650 W with a Power coefficient of 0.445 at a wind-speed of 5.5 m/s, reaching a power of 1.18 kW and a power coefficient of 0.40 at a wind-speed of 7 m/s.


2021 ◽  
pp. 1-28
Author(s):  
Mehmet Numan Kaya ◽  
Faruk Köse ◽  
Oguz Uzol ◽  
Derek Ingham ◽  
Lin Ma ◽  
...  

Abstract The aerodynamic shapes of the blades are still of high importance and various aerodynamic designs have been developed in order to increase the amount of energy production. In this study, a swept horizontal axis wind turbine blade has been optimized to increase the aerodynamic efficiency using the Computational Fluid Dynamics method. To illustrate the technique, a wind turbine with a rotor diameter of 0.94 m has been used as the baseline turbine and the most appropriate swept blade design parameters, namely the sweep start up section, tip displacement and mode of the sweep have been investigated to obtain the maximum power coefficient at the design tip speed ratio. At this stage, a new equation that allows all three swept blade design parameters to be changed independently has been used to design swept blades, and the response surface method has been used to find out the optimum swept blade parameters. According to the results obtained, a significant increase of 4.28% in the power coefficient was achieved at the design tip speed ratio with the new designed optimum swept wind turbine blade. Finally, baseline and optimum swept blades have been compared in terms of power coefficients at different tip speed ratios, force distributions, pressure distributions and tip vortices.


2021 ◽  
Vol 294 ◽  
pp. 01003
Author(s):  
Somaya Younoussi ◽  
Abdeslem Ettaouil

In this paper, an optimization approach of a small horizontal axis wind turbine based on BEM theory including De Vries and Shen et al. tip loss corrections is proposed. The optimal blade geometry was obtained by maximizing the power coefficient along the blade using the optimal angle of attack and the optimal tip speed ratio. The Newton’s iterative method applied to axial induction factor was used to solve the problem. This study was conducted for a NACA4418 small wind turbine, at low wind velocity. Among the two used tip loss corrections, the De Vries correction was found to be the most suitable for this blade optimization method. The optimal design was obtained for a tip speed ratio of 5 and has recorded a power coefficient equal to 0.463.


2021 ◽  
Vol 11 (4) ◽  
pp. 280-291
Author(s):  
Yu Yu Maw ◽  
Min Thaw Tun

This paper presents the performance of the diffuser augmented wind turbine (DAWT) with the various diffuser shapes using the numerical investigations. DAWT is also a type of wind turbine and the diffuser shapes, the nozzle shapes and the cylindrical shapes are commonly inserted around the horizontal axis wind turbine (HAWT) to become the more efficient wind turbine. The aim of this study is to find the more efficient design of the diffuser for the horizontal axis wind turbine using the numerical investigations. In this research, the converging and diverging diffuser shape is inserted and the airfoil design is calculated by using the Blade Elementary Momentum Theory. The airfoil type NACA 4412 is chosen because it is suitable for the low wind speed area and easy to produce. The turbulent model k-ω is combined with the Navier Stoke equation to solve the 3-dimensional steady flow simulation of the diffuser augmented wind turbine using the Computational Fluid Dynamics (CFD) simulations. The numerical investigation is used to compare and predict the power coefficient of the DAWT with various shapes. The baseline design of the diffuser (L = 170 mm, H = 57 mm and α = 11̊) is firstly investigated. To predict the power coefficient of the various diffuser shapes, the range of the length of the diffuser is (L/D = 0.5 to 1.5), the range of the brim height of the diffuser (H/D = 0.1 to 0.35) and the range of the angle of the diffuser (α = 5̊ to 15̊ ) are also investigated. The parameters of the diffuser shapes are assigned by using the Central Composite Design Face Centered Method. The response surface method is also used to predict the most efficient diffuser design. The performance of the horizontal axis wind turbine, that of the diffuser augmented wind turbine and that of the diffuser augmented wind turbine with various shapes of diffuser are compared. The performance of new diffuser augmented wind turbine (IND_009) is 50% and 55% higher than the baseline diffuser augmented wind turbine and the horizontal axis wind turbine at rated velocity. The flow visualization of the HAWT, DAWTs are also discussed.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Firman Aryanto ◽  
Made Mara ◽  
Made Nuarsa

The wind turbine is a device that converts wind energy into mechanical energy and then converted into electrical energy through a generator. Horizontal axis wind turbines can increase the efficiency to get the maximum power coefficient. One was using the blade numerous. Maximum efisiensi system will increase the number of watts (power) generated so as to obtain a certain number of watts by simply using the number of windmills lessThe object of this research is the performance testing horizontal axis wind turbine with wind speed variation and variation in terms of the number of blade Efisiensi system (𝜂 )  and Tip Speed Ratio (TSR). Research conducted with the wind coming from the source to the Wind Tunnel fan to direct wind. Wind speed is used there are three variations of the 3 m/s, 3.5 m/s, and 4 m/s and varying the amount of blade that is 3, 4, 5 and 6 blade.The results showed that the best 𝜂  values obtained at a maximum wind speed of 4 m / s and the number of blade 5 with a value of 3.07% 𝜂, whereas 𝜂 smallest value obtained at wind speeds of 3 m/s and the number of blade 3 that the value of 0.05% 𝜂. For TSR maximum value at a maximum speed of 4 m/s occurred in the number of blade 5 is equal to λ = 2.11, while the lowest value at wind speeds of 3 m/s resulting in blade number 3 is equal to λ = 1.49.


Author(s):  
A. R. Krishnanunni ◽  
N. Datta ◽  
H. S. Chambhare ◽  
D. Swaroop

Abstract The basic design and blade structural analysis of a 250 W rooftop-mounted horizontal-axis wind turbine for low wind speeds is presented. A simplified non-dimensional design is first undertaken to optimize the aerodynamic performance. The non-dimensional power curve vs. the design tip speed ratio is computed with the open-source wind turbine design software QBlade. SD7062 airfoil is chosen for the blade section; and its aerodynamic efficiency is obtained for various angles of attack using XFLR5. The design process also gives the optimal chord length and pitch distribution, leading to the blade geometry. The 22-month weather data at the site has been analyzed to obtain the best-fit Weibull distribution. The blade sizing is based on the maximum power coefficient before the stall regulation happens. An attempt is made to enhance the power capture by using a concentrator, whose aerodynamic efficacy is analyzed. The blades are fabricated from Glass Fiber Reinforced Plastic, which reduces both weight and cost. The configuration for the laminate is finalized after several bending and tensile tests of five distinct GFRP samples. This is followed by the structural analysis of the blade. The root stresses and tip deflection are analyzed for extreme-wind conditions, along with the free vibration frequencies.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1988 ◽  
Author(s):  
Abdelgalil Eltayesh ◽  
Magdy Bassily Hanna ◽  
Francesco Castellani ◽  
A.S. Huzayyin ◽  
Hesham M. El-Batsh ◽  
...  

Blockage corrections for the experimental results obtained for a small-scale wind turbine in a wind tunnel are required in order to estimate how the same turbine would perform in real conditions. The tunnel blockage is defined as the ratio of the wind turbine swept area to the wind tunnel cross-section area. Experimental measurements of the power coefficient were performed on a horizontal-axis wind turbine with two rotors of diameter equal to 2 m and different numbers of blades, namely three and five. Measurements were carried out for different tip speed ratios in the closed circuit open test section wind tunnel of the University of Perugia (Italy). The obtained experimental results were compared with the numerical ones carried out in free conditions by using a CFD approach based on the steady-RANS method with the SST k-ω turbulence model, adopting the multiple reference frame (MRF) strategy to reduce the computational effort. The comparison showed that the maximum value of blockage, which is reached in the asymptotic limit at very large tip speed ratio (TSR) values, does not depend appreciably on the number of blades. A higher number of blades, however, makes the occurrence of the maximum blockage come earlier at lower TSRs.


2020 ◽  
Vol 37 ◽  
pp. 63-71
Author(s):  
Yui-Chuin Shiah ◽  
Chia Hsiang Chang ◽  
Yu-Jen Chen ◽  
Ankam Vinod Kumar Reddy

ABSTRACT Generally, the environmental wind speeds in urban areas are relatively low due to clustered buildings. At low wind speeds, an aerodynamic stall occurs near the blade roots of a horizontal axis wind turbine (HAWT), leading to decay of the power coefficient. The research targets to design canards with optimal parameters for a small-scale HAWT system operated at variable rotational speeds. The design was to enhance the performance by delaying the aerodynamic stall near blade roots of the HAWT to be operated at low wind speeds. For the optimal design of canards, flow fields of the sample blades with and without canards were both simulated and compared with the experimental data. With the verification of our simulations, Taguchi analyses were performed to seek the optimum parameters of canards. This study revealed that the peak performance of the optimized canard system operated at 540 rpm might be improved by ∼35%.


Sign in / Sign up

Export Citation Format

Share Document