scholarly journals A Field Survey on Indoor Air Pollution in School Classrooms with Different Ventilation Methods

2019 ◽  
Vol 111 ◽  
pp. 01020
Author(s):  
Ko Murakami ◽  
Kenta Sakai ◽  
Daisuke Nakamura ◽  
Haruno Ishikawa ◽  
Sayana Tsushima ◽  
...  

The purpose of this study was to investigate the actual indoor air quality within two elementary schools with different types of ventilation methods, and to obtain data pertaining to the emission of bioeffluents within the schools. Field surveys on indoor air quality were conducted at two public elementary schools in Tokyo, both equipped with air-conditioning systems. School-A was also equipped with a heat-exchange ventilation system, while School-B did not have a ventilation system. Results of the study revealed that the target ventilation volume for the heat-exchange ventilation system in School-A was not achieved, indoor air quality in School-B was better in relatively cool conditions than School-A because of the habit of opening windows attached, there was a positive correlation between nonanal and decanal and CO2 concentration in summer, and the concentration of bioeffluents nonanal and decanal may be higher at high temperatures even under the same level of ventilation.

Author(s):  
Cesira Pasquarella ◽  
Carla Balocco ◽  
Maria Eugenia Colucci ◽  
Elisa Saccani ◽  
Samuel Paroni ◽  
...  

Surgical staff behavior in operating theatres is one of the factors associated with indoor air quality and surgical site infection risk. The aim of this study was to apply an approach including microbiological, particle, and microclimate parameters during two simulated surgical hip arthroplasties to evaluate the influence of staff behavior on indoor air quality. During the first hip arthroplasty, the surgical team behaved correctly, but in the second operation, behavioral recommendations were not respected. Microbiological contamination was evaluated by active and passive methods. The air velocity, humidity, temperature, and CO2 concentration were also monitored. The highest levels of microbial and particle contamination, as well as the highest variation in the microclimate parameter, were recorded during the surgical operation where the surgical team behaved “incorrectly”. Turbulent air flow ventilation systems appeared more efficient than in the past and very low air microbial contamination was reached when behavior was correct. Therefore, adherence to behavioral recommendations in operating theatres is essential to not undermine the effectiveness of the heating, ventilation, and air conditioning systems and employed resources.


2001 ◽  
Vol 16 (10) ◽  
pp. 952-960 ◽  
Author(s):  
Michele R. Kinshella ◽  
Michael V. Van Dyke ◽  
Ken E. Douglas ◽  
John W. Martyny

Author(s):  
Avesahemad SN Husainy ◽  

Every coin has two sides. Likewise, as we are progressing towards the era of technology and industrialization; a lot of worst effects are arising as well. Along with the ecosystem, human health is suffering from some adverse issues because of pollution. We have heard about outdoor air pollution but indoor air pollution is even more harmful to human health. It is being observed that Indoor Air Quality (IAQ) is getting worse day by day leading to many lung diseases, breathing issues, low birth rate, eye-related diseases, perinatal conditions, etc. Hence these issues have to be considered before getting too late. Indoor air quality varies from regions i.e. in the case of developed countries; cooling-heating appliances, electric devices, petroleum products, etc. are the major contributors to deplete IAQ. While in case of developing countries which have a huge number of rural areas; biomass open fires, traditional cooking systems with direct fire expose or indoor stove, etc. are the major factors behind damaged indoor air quality. Generally, children and aged persons spend most of their time inside the house. These people have low immunity hence they get easily affected by depleted IAQ and face many health-related issues. There is a long list of harmful pollutants like NOX, COX, SOX, organic matter, etc. that play a significant role in damaging air quality. A ventilation system is essential in offices, theatres, malls, homes, etc. but the occupant devices lower the air quality index. Likewise, green-house effects increase the percentage of COX which damages nature and human health as well. All these factors, parameters, adverse effects and solutions are studied in this paper.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3246
Author(s):  
Anass Berouine ◽  
Radouane Ouladsine ◽  
Mohamed Bakhouya ◽  
Mohamed Essaaidi

Ventilation, heating and air conditioning systems are the main energy consumers in building sector. Improving the energy consumption of these systems, while satisfying the occupants’ comfort, is the major concern of control and automation designers and researchers. Model predictive control (MPC) methods have been widely studied in order to reduce the energy usage while enhancing the occupants’ comfort. In this paper, a generalized predictive control (GPC) algorithm based on controlled auto-regressive integrated moving average is investigated for standalone ventilation systems’ control. A building’s ventilation system is first modeled together with the GPC and MPC controllers. Simulations have been conducted for validation purposes and are structured into two main parts. In the first part, we compare the MPC with two traditional controllers, while the second part is dedicated to the comparison of the MPC against the GPC controller. Simulation results show the effectiveness of the GPC in reducing the energy consumption by about 4.34% while providing significant indoor air quality improvement.


2021 ◽  
Vol 50 (6) ◽  
pp. 1609-1620
Author(s):  
Afzal Nimra ◽  
Zulfiqar Ali ◽  
Zaheer Ahmad Nasir ◽  
Sean Tyrrel ◽  
Safdar Sidra

Temporal variations of particulate matter (PM) and carbon dioxide (CO2 ) in orthopedic wards and emergency rooms of different hospitals of Lahore, Pakistan were investigated. Hospitals were classified into two groups, I (centrally air-conditioned) and II (non-central air-conditioned) based on the ventilation system. Statistical analysis indicated significantly lower PM and CO2 levels in centrally air-conditioned hospitals in comparison to non-central air-conditioned. The low indoor-outdoor (I/O) ratio of PM2.5 in the ward and emergency rooms of group I (0.62, 0.45) as compared to group II (0.70, 0.83), respectively, suggested that indoor spaces equipped with central air-conditioning systems efficiently filter particulates as compared to non- central air conditioning systems. Apart from the ventilation type, increased visitor and doctors’ activities, and cleaning sessions were observed to contribute significantly to indoor air quality. This study adds up to the understanding of temporal variations in PM emissions and the role of ventilation systems in context of hospitals in the urban centers in Pakistan. The findings can inform the development of intervention strategies to maintain the appropriate air quality in health care built environment in developing countries.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 220
Author(s):  
Yeo-Kyung Lee ◽  
Young Il Kim

Owing to the recent increase in the number of warning reports and alerts on the dangers of fine dusts, there has been an increasing concern over fine dusts among citizens. In spaces with poor ventilation, the occupants are forced to open the window to initiate natural ventilation via the direct introduction of the outside air; however, this may pose a serious challenge if the external fine-dust concentration is high. The lack of natural ventilation increases the indoor carbon dioxide (CO2) concentration, thus necessitating the installation of mechanical ventilation systems. This study analyzed the frequency of the application of mechanical ventilation systems in the Multi-purpose activity space of elementary schools, which are spaces where children require a higher indoor air quality than adults owing to the rapid increase in the CO2 concentration of the Multi-purpose activity space during activities. In addition, the architectural and equipment factors of the Multi-purpose activity spaces of nine elementary schools were characterized. The results revealed that five out of the nine elementary schools installed mechanical ventilation systems, whereas the remaining four schools installed jet air turnover systems. The indoor air quality of the Multi-purpose activity space of D elementary school, which had the minimum facility volume among the schools investigated in this study (564.2 m3), with up to 32 participants for each activity, was investigated. The results revealed that the ultrafine-dust (PM2.5) concentration of the facility was as high as 4.75 µg/m3 at a height of 1.2 m, and the CO2 concentration was as high as 3183 ppm. The results of the analysis of three elementary schools with different volumes were compared and analyzed using CONTAM simulation. This study determined the required volume per occupant and the optimum number of occupants for a given volume and presented guidelines for the optimum number of occupants, activities, and volume to reduce the high concentration of pollutants in the analyzed Multi-purpose activity space. The guideline proposed in this study is aimed at maintaining the CO2 concentration of the Multi-purpose activity space below 1000 ppm, as prescribed by the Indoor Air Quality Control in Public-Use Facilities, Etc. Act in South Korea.


2014 ◽  
Vol 13 (4) ◽  
pp. 041-048
Author(s):  
Marek Telejko

The article presents the results of indoor air quality (IAQ) assessment in four local preschools. The natural ventilation system was used in the buildings. Outdoor air was supplied to the premises through a leak in the external walls and air intakes were of maximum efficiency of 30 m3/h. Parameters describing IAQ were measured, such as: temperature, relative humidity and carbon dioxide concentration. Two series of studies were performed in each preschool. On the basis of the survey, it can be clearly stated that the indoor air quality in preschools is considered to be very low very low. All the analyzed parameters describing the quality do not meet the current legal requirements. Reported values of CO2 concentration exceeded three times the value set of the recommended maximum.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1257-1275
Author(s):  
Wisam M. Mareed ◽  
Hasanen M. Hussen

 Elevated CO2 rates in a building affect the health of the occupant. This paper deals with an experimental and numerical analysis conducted in a full-scale test room located in the Department of Mechanical Engineering at the University of Technology. The experiments and CFD were conducted for analyzing ventilation performance. It is a study on the effect of the discharge airflow rate of the ceiling type air-conditioner on ventilation performance in the lecture room with the mixing ventilation. Most obtained findings show that database and questionnaires analyzed prefer heights between 0.2 m to 1.2 m in the middle of an occupied zone and breathing zone height of between 0.75 m to 1.8 given in the literature surveyed. It is noticed the mismatch of internal conditions with thermal comfort, and indoor air quality recommended by [ASHRAE Standard 62, ANSI / ASHRAE Standard 55-2010]. CFD simulations have been carried to provide insights on the indoor air quality and comfort conditions throughout the classroom. Particle concentrations, thermal conditions, and modified ventilation system solutions are reported.


Author(s):  
Gabriela Ventura Silva ◽  
Anabela O. Martins ◽  
Susana D. S. Martins

Indoor air pollution has obtained more attention in a moment where “stay at home” is a maximum repeated for the entire world. It is urgent to know the sources of pollutants indoors, to improve the indoor air quality. This study presents some results obtained for twelve incense products, used indoors, at home, and in temples, but also in spa centers or yoga gymnasiums, where the respiratory intensity is high, and the consequences on health could be more severe. The focus of this study was the gaseous emissions of different types of incense, performing a VOC screening and identifying some specific VOCs different from the usual ones, which are known or suspected to cause severe chronic health effects: carcinogenic, mutagenic, and reprotoxic. Thirteen compounds were selected: benzene, toluene, styrene, naphthalene, furfural, furan, isoprene, 2-butenal, phenol, 2-furyl methyl ketone, formaldehyde, acetaldehyde, and acrolein. The study also indicated that incense cone type shows a higher probability of being more pollutant than incense stick type, as from the 12 products tested, four were cone type, and three of them were in the group of the four higher polluters. Benzene and formaldehyde presented worrying levels in the major part of the products, above guideline values established by the WHO. Unfortunately, there are no limit values established for indoor air for all the compounds studied, but this fact should not exempt us from taking action to alert the population to the potential dangers of using those products. From this study, acetaldehyde, acrolein, furfural, and furan emerge as compounds with levels to deserve attention.


Sign in / Sign up

Export Citation Format

Share Document