scholarly journals Numerical investigation of heat losses through cascaded fully open cavity receiver at high temperatures up to 500°C

2019 ◽  
Vol 128 ◽  
pp. 01018
Author(s):  
Kushal Wasankar ◽  
Shreyas Yadav ◽  
Ramola Sinha ◽  
Nitin Gulhane

In solar thermal systems, especially for high concentration applications, natural convection and radiation contributes a significant fraction of energy loss. Its characteristics hence need to be understood to improve system efficiency. In this work a numerical study is carried out to investigate the heat loss through a cascaded cavity receiver of a solar dish collector. The effect of increase in area ratio on heat loss is studied. The cascaded cavity receiver model is electrically heated with constant heat flux. A simulation model for combined natural convection and surface radiation is developed. The influence of orientation of the receiver, and the geometry on total heat loss from the receiver is investigated. The cavity inclination is varied from 0° to 90° in steps of 30°. The Computational Fluid Dynamics package “ANSYS 19.2 Fluent” has been used to numerically investigate the influence of cavity geometry and inclination on the convective loss through the aperture.The cascaded cavity receiver is found to reduce the natural convection and radiation heat losses.

1979 ◽  
Vol 101 (1) ◽  
pp. 108-113 ◽  
Author(s):  
A. C. Ratzel ◽  
C. E. Hickox ◽  
D. K. Gartling

Analytical and experimental work has been undertaken to analyze thermal conduction and natural convection heat losses in annular receiver geometries. Techniques studied for reducing conduction heat loss include evacuation of the annulus gas, oversizing of the annular space while maintaining slight vacuum levels, and use of gases other than air in the annular space. For the geometry considered, total heat loss reductions of 10 percent to 50 percent may be obtained depending on the means by which the conduction heat loss is limited. In addition, natural convection studies considering the effects of nonuniform temperature distributions and eccentric cylinders are discussed. The numerical analysis performed indicates that highly nonuniform temperature distributions are required to appreciably affect the natural convection process between concentric cylinders and that rather large eccentricities cause only a slight increase in natural convection heat transfer.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
James K. Yuan ◽  
Clifford K. Ho ◽  
Joshua M. Christian

Cavity receivers used in solar power towers and dish concentrators may lose considerable energy by natural convection, which reduces the overall system efficiency. A validated numerical receiver model is desired to better understand convection processes and aid in heat loss minimization efforts. The purpose of this investigation was to evaluate heat loss predictions using the commercial computational fluid dynamics (CFD) software packages fluent 13.0 and solidworks flow simulation 2011 against experimentally measured heat losses for a heated cubical cavity receiver model (Kraabel, 1983, “An Experimental Investigation of the Natural Convection From a Side-Facing Cubical Cavity,” Proceedings of the ASME JSME Thermal Engineering Joint Conference, Vol. 1, pp. 299–306) and a cylindrical dish receiver model (Taumoefolau et al., 2004, “Experimental Investigation of Natural Convection Heat Loss From a Model Solar Concentrator Cavity Receiver,” ASME J. Sol. Energy Eng., 126(2), pp. 801–807). Simulated convective heat loss was underpredicted by 45% for the cubical cavity when experimental wall temperatures were implemented as isothermal boundary conditions and 32% when the experimental power was applied as a uniform heat flux from the cavity walls. Agreement between software packages was generally within 10%. Convective heat loss from the cylindrical dish receiver model was accurately predicted within experimental uncertainties by both simulation codes using both isothermal and constant heat flux wall boundary conditions except when the cavity was inclined at angles below 15 deg and above 75 deg, where losses were under- and overpredicted by fluent and solidworks, respectively. Comparison with empirical correlations for convective heat loss from heated cavities showed that correlations by Kraabel (1983, “An Experimental Investigation of the Natural Convection From a Side-Facing Cubical Cavity,” Proceedings of the ASME JSME Thermal Engineering Joint Conference, Vol. 1, pp. 299–306) and for individual heated flat plates oriented to the cavity geometry (Pitts and Sissom, 1998, Schaum's Outline of Heat Transfer, 2nd ed., McGraw Hill, New York, p. 227) predicted heat losses from the cubical cavity to within experimental uncertainties. Correlations by Clausing (1987, “Natural Convection From Isothermal Cubical Cavities With a Variety of Side-Facing Apertures,” ASME J. Heat Transfer, 109(2), pp. 407–412) and Paitoonsurikarn et al. (2011, “Numerical Investigation of Natural Convection Loss From Cavity Receivers in Solar Dish Applications,” ASME J. Sol. Energy Eng. 133(2), p. 021004) were able to do the same for the cylindrical dish receiver. No single correlation was valid for both experimental receivers. The effect of different turbulence and air-property models within fluent were also investigated and compared in this study. However, no model parameter was found to produce a change large enough to account for the deficient convective heat loss simulated for the cubical cavity receiver case.


Author(s):  
James K. Yuan ◽  
Clifford K. Ho ◽  
Joshua M. Christian

Cavity receivers used in solar power towers and dish concentrators may lose considerable energy by natural convection, which reduces the overall system efficiency. A validated numerical receiver model is desired to better understand convection processes and aid in heat loss minimization efforts. The purpose of this investigation was to evaluate heat loss predictions using the commercial computational fluid dynamics software packages FLUENT 13.0 and SolidWorks Flow Simulation 2011 against experimentally measured heat losses for a heated cubical cavity model [1] and a cylindrical dish receiver model [2]. Agreement within 10% was found between software packages across most simulations. However, simulated convective heat loss was under predicted by 45% for the cubical cavity when experimental wall temperatures were implemented on cavity walls, and 32% when implementing the experimental heat flux from the cavity walls. Convective heat loss from the cylindrical dish receiver model was accurately predicted within experimental uncertainties by both simulation codes using both isothermal and constant heat flux wall boundary conditions except at inclination angles below 15° and above 75°, where losses were under- and over-predicted by FLUENT and SolidWorks, respectively. Comparison with empirical correlations for convective heat loss from heated cavities showed that correlations by Siebers and Kraabel [1] and for an assembly of heated flat plates oriented to the cavity geometry [3] predicted heat losses from the cubical cavity within experimental uncertainties, while correlations by Clausing [4] and Paitoonsurikarn et al. [8] were able to do the same for the cylindrical dish receiver. No single correlation was valid for both receiver models. Different turbulence and air-property models within FLUENT were also investigated and compared in this study.


Author(s):  
Wargha Peiman ◽  
Eugene Saltanov ◽  
Kamiel Gabriel ◽  
Igor Pioro

The objective of this paper is to calculate heat losses from a CANDU-6 fuel-channel while modifying it according to the specified operating pressure and temperature conditions of SuperCritical Water-cooled Reactors (SCWRs). Heat losses from the coolant to the moderator are significant in a SCWR because of high operating temperatures (i.e., 350–625°C). This has adverse effects on the overall thermal efficiency of the Nuclear Power Plant (NPP), so it is necessary to determine the amount of heat losses from fuel-channels proposed for SCWRs. Inconel-718 was chosen as a pressure tube (PT) material and PT minimum required thickness was calculated in accordance with the coolant’s maximum operating pressure and temperature. The heat losses from the fuel-channel were calculated along the heated length of the fuel-channel. Steady-state one-dimensional heat-transfer analysis was conducted, and programming in MATLAB was performed. The fuel-channel was divided into small segments and for each segment thermal resistances of the fuel-channel components were analyzed. Further, the thermophysical properties of the coolant, annulus gas, and moderator were retrieved from the NIST REFPROP software. The analysis outcome resulted in a total heat loss of 29.3 kW per fuel-channel when the pressure of the annulus gas was 0.3 MPa.


1995 ◽  
Vol 117 (4) ◽  
pp. 307-316 ◽  
Author(s):  
Elias Papanicolaou ◽  
Sridhar Gopalakrishna

A numerical study of natural convection induced in a horizontal, enclosed air layer due to a discrete, constant heat flux source at the bottom surface is carried out in this paper. The nature of the transition from conduction to a cellular convection regime for this discrete-heating case is characterized. Multiple sources are also considered and the results are compared to those for a single source. The governing equations of continuity, momentum, and energy conservation are formulated for a two-dimensional layer. The important parameters are the overall aspect ratio (length/height of the layer), the ratio of source length to total length, and the Rayleigh number. The effect of varying these parameters is investigated, and heat transfer correlations are derived, for both single and multiple sources, in the form Nus ∝ C (Ra)c>, where Nus is the Nusselt number averaged over each source. The value of C is found to depend strongly on the aspect ratio and the source size. Based on the heat transfer results, the tendency of each geometric configuration to fully attain transition to the convection regime is evaluated. This can provide guidelines for maintaining certain critical dimensions that best exploit natural convection effects, in systems where fan-driven cooling is not available.


2020 ◽  
Vol 330 ◽  
pp. 01029
Author(s):  
Mohamed Amine MEDEBBER ◽  
Abderrahmane AISSA ◽  
Belkacem OULD SAID ◽  
Noureddine RETIEL ◽  
Mohammed EL GANAOUI

The interaction of natural convection with thermal radiation of black surfaces in a cylindrical enclosure filled with air has been numerically investigated. The steady-state continuity, Navier-Stokes and energy equations were discretized using the control volume method and solved numerically via the SIMPLER algorithm. Effects of Rayleigh number (Ra), wall emissivity (εp) and height ratio parameter (X) are studied. The result shows that surface radiation significantly altered the temperature distribution and the flow patterns, especially at higher Rayleigh numbers. The total average Nusselt number has also been discussed for valuating heat transfer through the enclosure.


Author(s):  
Manoj Kumar Dash ◽  
Sukanta Kumar Dash

Abstract The present work reports a comparative analysis of natural convection heat transfer from a thick hollow vertical cylinder either placed on the ground or suspended in the air. The numerical simulations have been performed by varying the cylinder length to its outer diameter (L/Do) in the range of 0.2–20, the thickness ratio (Di/Do) in a range of 0.5–0.9, and Rayleigh number (Ra) from 104 to 108. The flow and heat transfer characteristics have been delineated precisely with the presentation of the thermal plume and flow field in the vicinity of the cylinder. The variation of average Nusselt number (Nu), local Nu, and contribution to total heat loss from different surfaces with the pertinent parameters have been elucidated graphically. The average Nu is always more for the cylinder in the air compared with the case when it is on the ground. However, the difference between the Nu for these two cases diminishes, as the L/Do increases. It has also been found that the contribution to total heat loss from the inner surface of the hollow cylinder suspended in air increases with L/Do, attains a peak, and decreases sharply. Cooling time curves for the cylinder placed in air or on the ground have been described precisely. Finally, a correlation for the average Nusselt number as a function of all the pertinent parameters has been proposed that can be useful for industrial and academic purposes.


2005 ◽  
Author(s):  
Arnout Willockx ◽  
Christophe Tjoen ◽  
Hendrik-Jan Steeman ◽  
Michel De Paepe

In this paper, a numerical study of natural convection from a disk is presented. The disk is placed vertically in a closed cavity (cylinder) and has a constant heat flux. Different numerical simulations of this test case are executed at various gravity accelerations (=g) inside the cavity. The accelerations are varied from 9.81 m/s2 to 53 m/s2. The Rayleigh number changes with these accelerations. The flow pattern and the temperature distribution inside the cavity are visualized. For natural convection inside a cavity, a vortex is expected in the air flow: a plume of warm rising air at the centre of the cylinder above the heated square disk and descending colder air at the walls of the cavity. The air velocity is higher in the central plume. At w = 9.81 m/s2, the maximum air velocity is 0.05 m/s. This velocity increases with increasing acceleration w till 0.6 m/s at w = 53 m/s2. At low w, the flow pattern exists of a stable vortex and thus a steady-state flow. At w = 15 m/s2, the vortex becomes more unstable and is swirling. At w = 27 m/s2, the vortex is even more swirling and the following periodical phenomenon takes place: first the vortex starts to dissolve in a small vortex at the top of the cylinder and a vortex below this around the square disk. Then, the lower vortex starts to increase again and the upper vortex is fading. So there is again one big vortex with a central, unstable plume that reaches the top of the cylinder. After a few seconds, the plume dissolves again. This phenomenon has no constant period. The higher w, the faster this phenomenon happens and thus the shorter the period. At w = 53m/s2, the vortex seems more turbulent than laminar, however the Rayleigh number is still in the laminar range (Ra<106). The numerical simulations are verified with existing correlations. There was a good agreement between correlations and numerical simulation.


2011 ◽  
Vol 268-270 ◽  
pp. 214-218 ◽  
Author(s):  
Shuang Ying Wu ◽  
Lan Xiao ◽  
You Rong Li

A 3-D numerical study has been carried out to uncover the influence of cavity aspect ratio on natural convection heat loss of a solar receiver for high-temperature dish system, accounting for air property variation with temperature. Temperature and velocity contours as well as the variation of the natural convection heat loss with the cavity aspect ratio have been well presented and discussed. It is revealed that the expansion of convection zone together with the augmentation of velocity magnitude result in the increment of natural convection heat loss with decreasing aspect ratio, i.e., with shallower cavity, especially when the cavity aspect ratio larger than 1. Therefore, the solar receiver with much too shallow cavity should be avoided in design.


Sign in / Sign up

Export Citation Format

Share Document