scholarly journals Cost minimization for safety enhancing of timber beam structures in historical buildings

2019 ◽  
Vol 97 ◽  
pp. 03002 ◽  
Author(s):  
Anatoly Alekseytsev ◽  
Michael Botagovsky ◽  
Natalya Kurchenko

A search method for finding rational parameters of beam structure bearing capacity recovery systems has been developed. This task is relevant to historic buildings containing girders with structural damage. The solution search technique is implemented by the example of calculating the parameters for timber beams external bearing capacity restoration systems with local damage or destruction of supports. An adapted genetic algorithm is used as a tool to solving the problem. A feature of this algorithm is the use of an improved random change operator and the formation of an initial and subsequent solutions sets. In this case, classical evolutionary modelling operators are not used, and the preservation of solutions from iteration to iteration is performed based on modification of the well-known elitism principle. Such computational process has allowed increasing the convergence of the iterative optimization significantly for the tasks considered. Ensuring the structure safety is achieved by strength conditions and regulating the system deflection while minimizing the costs for its operation. Herewith, the objective function allows taking into account both the lump-sum costs for system restoration arrangement and the costs for maintaining its operation during the operation cycle. An example of restoring the beam bearing capacity with the loss of stiffness of its supporting and middle span sections has been considered.

2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Peng Sun ◽  
Ziyan Wu ◽  
Qingyi Hua ◽  
Zhanhuai Li ◽  
Muning Kang

We present a general dynamic visualization model named DynaView to construct virtual scenes of structural health monitoring (SHM) process. This model consists of static, dynamic, and interaction submodels. It makes the visualization process dynamic and interactive. By taking an example of a simplified reinforced concrete beam structure model, we obtain raw data through the examination. We conduct the effective general and practicable assessment of structural damage conditions based on fuzzy pattern recognition to compute the assessment results. We construct the DynaView model of the sample structure and visualize it. The instance indicates that DynaView model is efficient and practically applicable.


2012 ◽  
Vol 193-194 ◽  
pp. 1342-1345
Author(s):  
Mao Jiang ◽  
Ling Zhou ◽  
Ying Tao Li ◽  
Hai Qing Zhou ◽  
Jun Shao

In order to explore the effective damage identification method for structure, the structural vibration signal is directly correlation dimension analyzed according to fractal theory, and structural damage is identified by measuring the singularity in system output, then the method for structural damage identification based on correlation dimension of vibration response is proposed. The damage analysis results of a simply supported beam demonstrate that, the proposed method can accurately detect single and multi different degree damage’s location of beam structure, and alteration of correlation dimension will increase along with the damage degree


2014 ◽  
Vol 1065-1069 ◽  
pp. 2319-2322
Author(s):  
Yu Ying Wang ◽  
Ya Zhou Sun ◽  
Le Yang Feng

During the process of being used, engineering structures will undergo material aging and structural damage with time passing by under the combined influence of internal factors including load, environment and structural material[1], and accumulation of such damages will cause decrease of bearing capacity, durability and reliability. Among various factors influencing the reliability of in-service structures, ultimate bearing capacity plays the decisive role in safety. In this paper, the fourth-order moment of limit state function is inferred through calculation of failure probability of in-service structures, and thus safety and durability of in-service structures can be ensured.


2021 ◽  
Vol 5 (2) ◽  
pp. 117-130
Author(s):  
Darmansyah Tjitradi ◽  
Eliatun Eliatun ◽  
Oktafianus Steven Tjitradi

The soil in Banjarmasin City is of soft clay type having a very low bearing capacity. Hence, it is normal for buildings in this area to have gelam wooden piles as part of the foundation. Foundations based on gelam wooden piles rely on friction which results in the building experiencing differential settlement, tilt, and cracks on the structural elements. This foundation settlement will be modeled using ANSYS software involving fifteen building structural models with brick walls under loads according to SNI 1727:2013 and due to settlement at the support. The modeling aims at understanding the effects of using tie beams on the pattern of structural damage in buildings that experience differential settlement on soft soil. Hasil penelitian menunjukkan bahwa penggunaan tie beam pada pondasi pada tanah lunak berpengaruh terhadap pola kerusakan. Pada tanah keras, ini tidak membawa efek seperti itu tetapi sebaliknya, itu meningkatkan tingkat ketidaktentuan statis struktur. Dalam kasus portal bentang tunggal, pola retakan menyerupai huruf "V" terbalik jika penurunan terjadi pada tumpuan samping. Di portal bentang ganda, di sisi lain, pola retakan dinding bata menyerupai huruf "V" jika penurunan terjadi pada penyangga samping, dan "V" terbalik jika terjadi di antara penyangga.


2017 ◽  
Vol 27 (4) ◽  
pp. 143-156 ◽  
Author(s):  
Maciej Szumigała ◽  
Ewa Szumigała ◽  
Łukasz Polus

Abstract This paper presents an analysis of timber-concrete composite beams. Said composite beams consist of rectangular timber beams and concrete slabs poured into the steel sheeting. The concrete slab is connected with the timber beam using special shear connectors. The authors of this article are trying to patent these connectors. The article contains results from a numerical analysis. It is demonstrated that the type of steel sheeting used as a lost formwork has an influence on the load-bearing capacity and stiffness of the timber-concrete composite beams.


2019 ◽  
Vol 972 ◽  
pp. 111-117
Author(s):  
Farid A. Boytemirov ◽  
Dmitry D. Koroteev ◽  
Makhmud Kharun

Vital problem, occurring in the operation process of structures such as timber beams, is the increase of their bearing capacity and span length with keeping their height. One of the possible ways to solve this problem is steel reinforcement of such structures. The aim of the research work is to show possibility of increasing bearing capacity of single-span reinforced timber beams and develop the main points of calculation and design of such structures. The beam is reinforced symmetrically by 2 rods d28 with both sides with Ar=24.63 cm2 (4d28 A300). The reinforcement is placed in compressed and stretched areas. Reinforced timber structures are designed on two groups of limit conditions. Design on the first limit condition (normal and tangential stress) is made using geometric characteristics of rectangular section of reinforced timber beam. Design on the second limit condition is made taking onto account the timber elastic nodule and inertia moment for reinforced timber beam. The main features of joint work of timber and reinforcement, which can increase operation reliability of bearing structures, are shown in the research work.


2013 ◽  
Vol 681 ◽  
pp. 271-275
Author(s):  
Jing Li ◽  
Pei Jun Wei

Based on the vibration information, a mixed sensitivity method is presented to identify structural damage by combining the eigenvalue sensitivity with the generalized flexibility sensitivity. The sensitivity of structural generalized flexibility matrix is firstly derived by using the first frequency and the corresponding mode shape only and then the eigenvalue sensitivity together with the generalized flexibility sensitivity are combined to calculate the elemental damage parameters. The presented mixed perturbation approach is demonstrated by a numerical example concerning a simple supported beam structure. It has been shown that the proposed procedure is simple to implement and may be useful for structural damage identification.


2021 ◽  
Vol 95 (3) ◽  
pp. 76-108
Author(s):  
N.V. FEDOROVA ◽  
◽  
S.YU. SAVIN ◽  

During the entire life cycle, the facilities are experienced to force and environmental actions of various nature and intensity. In some cases, such influences can lead to a loss of the bearing capacity of the structural elements of a building, which in turn can lead to a disproportionate failure of the entire structural system. Such phenomenon was called progressive collapse. Major accidents at facilities, such as the collapse of a section of the Ronan Point high-rise residential building (London, 1968), the Sampoong department store (Seoul, 1995), the Transvaal Park pavement (Moscow, 2004), the World Trade Center (New York, 2011) and others, clearly demonstrated the urgency of this problem. In this regard, the regulatory documents of the USA, Great Britain, EU, China, Australia, Russia and other countries established requirements for the need to calculate structural systems of buildings for resist to progressive collapse after sudden localized structural damage. However, the steady increase in the number of new publications on the problem of progressive collapse observed in the world scientific literature indicates that the results of such studies do not yet provide exhaustive answers to all questions related to this phenomenon. In this regard, the proposed review article is aimed at systematizing, generalizing and analyzing new research results on resistance to progressive collapse of facilities, identifying new trends and proposing new research directions and tasks to improve the level of structural safety of design solutions for buildings and structures. In order to achieve this goal, the following aspects were considered: the nature of the impacts leading to progressive collapse; features of modeling the progressive collapse of structural systems of buildings and structures; mechanisms of resistance to progressive collapse and criteria for evaluation of a progressive collapse resistance. Particular attention in the scientific review is paid to the analysis of works related to a new direction of research in the area under consideration, associated with the assessment of the bearing capacity of eccentrically compressed elements of structural systems, the effect on their resistance to progressive collapse of the parameters of the loading mode, degradation of material properties and the topology of the structural system. The significance of the proposed scientific review is that, along with the well-known and new results presented in the English-language scientific literature, it summarizes and analyzes the original approaches, methods and research results published in Russian-language scientific publications, primarily included in the RSCI Web of Science.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 340
Author(s):  
Jilin Hou ◽  
Zhenkun Li ◽  
Qingxia Zhang ◽  
Runfang Zhou ◽  
Łukasz Jankowski

Adding virtual masses to a structure is an efficient way to generate a large number of natural frequencies for damage identification. The influence of a virtual mass can be expressed by Virtual Distortion Method (VDM) using the response measured by a sensor at the involved point. The proper placement of the virtual masses can improve the accuracy of damage identification, therefore the problem of their optimal placement is studied in this paper. Firstly, the damage sensitivity matrix of the structure with added virtual masses is built. The Volumetric Maximum Criterion of the sensitivity matrix is established to ensure the mutual independence of measurement points for the optimization of mass placement. Secondly, a method of sensitivity analysis and error analysis is proposed to determine the values of the virtual masses, and then an improved version of the Particle Swarm Optimization (PSO) algorithm is proposed for placement optimization of the virtual masses. Finally, the optimized placement is used to identify the damage of structures. The effectiveness of the proposed method is verified by a numerical simulation of a simply supported beam structure and a truss structure.


Sign in / Sign up

Export Citation Format

Share Document