scholarly journals The diversity of active microbial groups in an activated sludge process treating painting process wastewater

2020 ◽  
Vol 148 ◽  
pp. 01002
Author(s):  
Herto Dwi Ariesyady ◽  
Mentari Rizki Mayanda ◽  
Tsukasa Ito

Activated sludge process is one of the wastewater treatment method that is applied for many wastewater types including painting process wastewater of automotive industry. This wastewater is well-known to have high heavy metals concentration which could deteriorate water environment if appropriate performance of the wastewater treatment could not be achieved. In this study, we monitored microbial community diversity in a Painting Biological Treatment (PBT) system. We applied a combination of cultivation and genotypic biological methods based on 16S rRNA gene sequence analysis to identify the diversity of active microbial community. The results showed that active microbes that could grow in this activated sludge system were dominated by Gram-negative bacteria. Based on 16S rRNA gene sequencing analysis, it was revealed that their microbial diversity has close association with Bacterium strain E286, Isosphaera pallida, Lycinibacillus fusiformis, Microbacterium sp., Orchobactrum sp., Pseudomonas guariconensis, Pseudomonas sp. strain MR84, Pseudomonas sp. MC 54, Serpens sp., Stenotrophomonas acidaminiphila, and Xylella fastidiosa with similarity of 86 – 99%. This findings reflects that microbial community in a Painting Biological Treatment (PBT) system using activated sludge process could adapt with xenobiotics in the wastewater and has a wide range of diversity indicating a complex metabolism mechanism in the treatment process.

2004 ◽  
Vol 50 (4) ◽  
pp. 291-297 ◽  
Author(s):  
A.L. Geng ◽  
X.G. Chen ◽  
W.D. Gould ◽  
Y.L. Ng ◽  
R. Yan ◽  
...  

Biological treatment of odorous sulphur-containing compounds is attracting attention due to its benign eco-friendliness, energy-savings and low operating costs. As the biological treatment efficiency of dimethylsulphide (DMS) reported was often low and variable, selection of useful DMS-degrading micro-organisms is of importance for the enhancement of the biological deodorizing process. This paper reports the successful isolation of a DMS-degrading bacterium from activated sludge, using the enrichment isolation technique. The isolate was identified by 16S rRNA gene sequencing, and found to belong to the alpha group of Proteobacteria, with an identity of 99.4% and 99.1% to the 16S rRNA gene sequences of Afipia felis and Pseudomonas carboxydohydrogena, respectively. The isolate was able to metabolize DMS as well as hydrogen sulphide (H2S). A batch experiment was performed to assess the removal characteristics of DMS by the isolate. The results showed that over half of DMS could be removed by the isolate in 3 hours when the initial DMS amount was approximately 10 mmol and 25 mmol. Removal of H2S by the isolate was evaluated by a continuous test in a 2-L gas-bubbling bottle. Although part of the H2S removal by the mineral medium itself was observed in the control test, the majority of H2S removal was believed to be attributed to the metabolic activity of the isolate. In conclusion, the isolate might be potentially useful for the enhancement of the biological deodorizing processes.


2012 ◽  
Vol 66 (10) ◽  
pp. 2155-2161 ◽  
Author(s):  
Purnika Damindi Ranasinghe ◽  
Hiroyasu Satoh ◽  
Mamoru Oshiki ◽  
Kenshiro Oshima ◽  
Wataru Suda ◽  
...  

The diversity of bacterial groups in activated sludge from large- and small-scale wastewater treatment plants was explored by barcoded pyrosequencing of 16S rRNA gene. Activated sludge samples (three small and 17 large scale) were collected from 12 wastewater treatment plants to clarify precise taxonomy and relative abundances. DNA was extracted, and amplified by 4 base barcoded 27f/519r primer set. The 454 Titanium (Roche) pyrosequences were obtained and analyses performed by Quantitative Insight Into Microbial Ecology (QIIME) with around 100,000 reads. Sequence statistics were computed, while constructing a phylogenetic tree and heatmap. Computed results explained total microbial diversity at phylum and class level and resolution was further extended to Operational Taxonomic Unit (OTU) based taxonomic assignment for investigating community distribution based on individual sample. Composition of sequence reads were compared and microbial community structures for large- and small-scale treatment plants were identified as major phyla (Proteobacteria and Bacteroidetes) and classes (Betaproteobacteria and Bacteroidetes). Also, family level breakdowns were explained and differences in family Nitrospiraceae and phylum Actinobacteria found at their species level were also illustrated. Thus, the pyrosequencing method provides high resolution insight into microbial community structures in activated sludge that might have been unnoticed with conventional approaches.


2021 ◽  
Author(s):  
Morten Simonsen Dueholm ◽  
Marta Nierychlo ◽  
Kasper Skytte Andersen ◽  
Vibeke Rudkjoebing Joergensen ◽  
Simon Knutsson ◽  
...  

Biological wastewater treatment and an increased focus on resource recovery is fundamental for environmental protection, human health, and sustainable development. Microbial communities are responsible for these processes, but our knowledge of their diversity and function is still poor, partly due to the lack of good reference databases and comprehensive global studies. Here, we sequenced more than 5 million high-quality, full-length 16S rRNA gene sequences from 740 wastewater treatment plants (WWTPs) across the world and used the sequences to construct MiDAS 4, a full-length amplicon sequence variant resolved 16S rRNA gene reference database with a comprehensive taxonomy from the domain to species-level for all references. Using a study-independent amplicon dataset from the Global Water Microbiome Consortium project (269 WWTPs), we showed that the MiDAS 4 database provides much better coverage for bacteria in WWTPs worldwide compared to commonly applied universal references databases, and greatly improved the rate of genus and species-level classification. Hence, MiDAS 4 provides a unifying taxonomy for the majority of prokaryotic diversity in WWTPs globally, which can be used for linking microbial identities with their functions across studies. Taking advantage of MiDAS 4, we carried out an amplicon-based, global-scale microbial community profiling of activated sludge plants using two common sets of primers targeting the V1-V3 and V4 region of the 16S rRNA gene. We found that the V1-V3 primers were generally best suited for this ecosystem, and revealed how environmental conditions and biogeography shape the activated sludge microbiota. We also identified process-critical taxa (core and conditionally rare or abundant taxa), encompassing 966 genera and 1530 species. These represented approximately 80% and 50% of the accumulated read abundance, respectively, and represent targets for further investigations. Finally, we showed that for well-studied functional guilds, such as nitrifiers or polyphosphate accumulating organisms, the same genera were prevalent worldwide, with only a few abundant species in each genus.


2002 ◽  
Vol 7 (5) ◽  
pp. 323-326
Author(s):  
Motohiko Hikuma ◽  
Masanori Nakajima ◽  
Toshiaki Hirai ◽  
Hiroshi Matsuoka

2014 ◽  
Vol 48 (8) ◽  
pp. 717-728 ◽  
Author(s):  
M. N. Zakaria ◽  
T. Takeshita ◽  
Y. Shibata ◽  
H. Maeda ◽  
N. Wada ◽  
...  

2019 ◽  
Author(s):  
Miguel I. Uyaguari-Diaz ◽  
Matthew A. Croxen ◽  
Kirby Cronin ◽  
Zhiyao Luo ◽  
Judith Isaac-Renton ◽  
...  

AbstractTraditional methods for monitoring the microbiological quality of water focus on the detection of fecal indicator bacteria such as Escherichia coli, often tested as a weekly grab sample. To understand the stability of E.coli concentrations over time, we evaluated three approaches to measuring E. coli levels in water: microbial culture using Colilert, quantitative PCR for uidA and next-generation sequencing of the 16S rRNA gene. Two watersheds, one impacted by agricultural and the other by urban activities, were repeatedly sampled over a simultaneous ten-hour period during each of the four seasons. Based on 16S rRNA gene deep sequencing, each watershed showed different microbial community profiles. The bacterial microbiomes varied with season, but less so within each 10-hour sampling period. Enterobacteriaceae comprised only a small fraction (<1%) of the total community. The qPCR assay detected significantly higher quantities of E. coli compared to the Colilert assay and there was also variability in the Colilert measurements compared to Health Canada’s recommendations for recreational water quality. From the 16S data, other bacteria such as Prevotella and Bacteroides showed promise as alternative indicators of fecal contamination. A better understanding of temporal changes in watershed microbiomes will be important in assessing the utility of current biomarkers of fecal contamination, determining the best timing for sample collection, as well as searching for additional microbial indicators of the health of a watershed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhou Jiang ◽  
Ping Li ◽  
Yanhong Wang ◽  
Han Liu ◽  
Dazhun Wei ◽  
...  

Abstract Microbial metabolisms of arsenic, iron, sulfur, nitrogen and organic matter play important roles in arsenic mobilization in aquifer. In this study, microbial community composition and functional potentials in a high arsenic groundwater were investigated using integrated techniques of RNA- and DNA-based 16S rRNA gene sequencing, metagenomic sequencing and functional gene arrays. 16S rRNA gene sequencing showed the sample was dominated by members of Proteobacteria (62.3–75.2%), such as genera of Simplicispira (5.7–6.7%), Pseudomonas (3.3–5.7%), Ferribacterium (1.6–4.4%), Solimonas (1.8–3.2%), Geobacter (0.8–2.2%) and Sediminibacterium (0.6–2.4%). Functional potential analyses indicated that organics degradation, assimilatory sulfate reduction, As-resistant pathway, iron reduction, ammonification, nitrogen fixation, denitrification and dissimilatory nitrate reduction to ammonia were prevalent. The composition and function of microbial community and reconstructed genome bins suggest that high level of arsenite in the groundwater may be attributed to arsenate release from iron oxides reductive dissolution by the iron-reducing bacteria, and subsequent arsenate reduction by ammonia-producing bacteria featuring ars operon. This study highlights the relationship between biogeochemical cycling of arsenic and nitrogen in groundwater, which potentially occur in other aquifers with high levels of ammonia and arsenic.


Sign in / Sign up

Export Citation Format

Share Document