scholarly journals Update of the P100-1 Concrete Provisions

2014 ◽  
Vol 10 (3) ◽  
pp. 36-47 ◽  
Author(s):  
Viorel Popa

Abstract In an effort to improve the harmonization of the Romanian design codes with the Eurocodes, the revision of the Seismic Design Code, P100-1, started in April 2010 and ended in September 2013. The main issues addressed during the revision process are presented in this paper. They include re-outlining the fundamental requirements for seismic design, revision of the seismic action, improvement of the specific provisions for the design of reinforced concrete, steel, composite, wood and masonry structures and non-structural components. This paper focuses on the specific provisions for reinforced concrete structures but general information about the fundamental requirements and the seismic action are presented as well.

2020 ◽  
Vol 156 ◽  
pp. 03005
Author(s):  
Lukman Murdiansyah ◽  
Robby Permata ◽  
Donald Essen

This paper presents an evaluation study of the performance of reinforced concrete arch bridge structures under earthquake load. The study is aimed to investigate the seismic performance of Wreksodiningrat Bridge, located in the province of Yogyakarta, Indonesia. This bridge is a three spans reinforced concrete arch bridge with a main span length of 75 m and two side spans with a length of 35 m, respectively. This study is a part of a large project carried out by the Ministry of Public Works to study the impact of the new 2016 Indonesia Seismic Design Code for Bridges (SNI 2833:2016). The main objective of this paper is to determine the displacement demands due to earthquake load based on the new seismic code design for bridges, SNI 2833:2016. In addition, demand capacity ratios (D/C) of the main structural components, such as the compression arch and main column (pier) at the fixed support, are also reviewed in this paper. The analysis was carried out using nonlinear modal pushover analysis. The arch bridge modeling is three dimensional, where structural elements such as beams, columns, and compression arches are modeled as frame elements. The plastic hinges are modeled as fiber hinges with unconfined and confined concrete material stress-strain relationship following Mander formula. The analysis result shows that the displacement demands of the bridge are 2.9 cm and 20 cm in the longitudinal and transverse direction, respectively. The D/C ratios of the compression arch due to demand earthquake load are 0.74 and 0.95 in the longitudinal and transverse direction of the bridge, while the D/C ratios of the pier are 0.15 and 0.80 in the longitudinal and transverse direction. Based on the above results, it is concluded that the studied bridge is able to withstand the seismic load requirements in the new Indonesia Seismic Design Code.


2010 ◽  
Vol 452-453 ◽  
pp. 517-520 ◽  
Author(s):  
Bai Tao Sun ◽  
Qiang Zhou ◽  
Pei Lei Yan

The Wenchuan earthquake occurred on May 12, 2008 (Beijing Time) caused great economical loss and large amount of buildings were destroyed. Many of single-story reinforced concrete industrial buildings in Hanwang town located in the highly seismic region were damaged, and the damaging phenomenons are very typical. According to the damage survey and analysis of typical seismic damage for the single-story reinforced concrete industrial buildings located in Hanwang town, the damage distribution and failure characters of these buildings are summarized in this paper. The single-story reinforced concrete industrial buildings which were designed according to current seismic design code have better earthquake resistant behavior than those old single-story reinforced concrete industrial buildings and the damaging phenomenon show some new features. Finally, combining current seismic design code of our country and the earthquake damage lessons, some reasonable suggestions on the work of seismic strengthening and earthquake resistant design of the single-story reinforced concrete industrial buildings have been given.


2018 ◽  
Author(s):  
Wooil Choi ◽  
Jae-Woo Park ◽  
Jinhwan Kim

Abstract. After the 2016 Gyeongju earthquake and the 2017 Pohang earthquake struck the Korean peninsula, securing financial stability for earthquake risk has become an important issue in Korea. Many domestic researchers are currently studying potential earthquake risk. However, empirical analysis and statistical approach are ambiguous in the case of Korea because no major earthquake has ever occurred on the Korean peninsula since Korean Meteorological Agency started monitoring earthquakes in 1978. This study focuses on evaluating possible losses due to earthquake risk in Seoul, the capital of Korea, by using catastrophe model methodology integrated with GIS (Geographic Information System). The building information such as structure and location is taken from the building registration database and the replacement cost for building is obtained from insurance information. As the seismic design code in KBC (Korea Building Code) is similar to the seismic design code of UBC (Uniform Building Code), the damage functions provided by HAZUS-MH are used to assess the damage state of each building in event of an earthquake. 12 earthquake scenarios are evaluated considering the distribution and characteristics of active fault zones in the Korean peninsula, and damages with loss amounts are calculated for each of the scenarios.


Author(s):  
Y. Namita ◽  
K. Suzuki ◽  
H. Abe ◽  
I. Ichihashi ◽  
M. Shiratori ◽  
...  

In FY 2000, a 3-year testing program of eroded piping was initiated with the following objectives: 1) to ascertain the seismic safety margins for eroded piping designed under the current seismic design code, 2) to clarify the elasto-plastic response and ultimate strength of eroded nuclear piping. A series of tests on eroded piping components and eroded piping systems was planned. In this paper, the results of those tests are presented and analyzed, focusing on the influence of the form and the number of thinned-wall portions on the fatigue life of the piping.


Author(s):  
Y. Namita ◽  
K. Suzuki ◽  
H. Abe ◽  
I. Ichihashi ◽  
M. Shiratori ◽  
...  

In 2000FY, a 3 year program of eroded piping tests was initiated with the following objectives: 1) to ascertain the seismic safety margins for eroded piping designed under the current seismic design code, 2) to clarify the elasto-plastic response and ultimate strength of eroded nuclear piping. It was intended to carry out a series of tests on eroded piping components and eroded piping systems. This paper is a report on the program of eroded piping tests.


2020 ◽  
Vol 9 (1) ◽  
pp. 94-107
Author(s):  
Savu Adrian-Alexandru

Abstract The purpose of the current paper is to raise awareness on the behaviour of rectangular reinforced concrete columns with disproportionate cross-section dimensions subjected to compression and biaxial bending, considering the fact that in the current structural design process, the design of columns is usually done with respect to each of the two principal directions without considering their combined effect. The paper is based on a case study regarding a building that is currently in the design phase, in which to obtain a correct seismic behaviour, rectangular columns with disproportionate cross-section dimensions were used. The design of both the building and the columns follows the Romanian seismic design codes (“P100-1/2013 - Seismic design code - Part 1 - Design provisions for buildings” and “SR-EN 1998/2004 - Design of structures for earthquake resistance”). Results were compared and conclusions were drawn based on the interaction curves and interaction surfaces computed with expressions from specialized literature and sectional analysis software.


2015 ◽  
Vol 4 (2) ◽  
pp. 17
Author(s):  
Lei Yang

<p>The heavy casualties and property losses caused by the earthquake this huge disaster, making high-rise building seismic become the focus of attention. Our new building seismic design code (GB50011-2001) (hereinafter referred to as "Seismic Design Code”) continue to be used (GBJ-89) specification to determine the "three earthquake performance objectives, two-stage design step" seismic design, and made many important supplement and perfect. The new seismic design of buildings in terms of requirements for introducing means as constraints optimization design, optimization design closer to engineering practice.</p>


Sign in / Sign up

Export Citation Format

Share Document