scholarly journals Studying the features of the implementation of underground coal gasification technology in terms of Lvivvuhillia SE

2020 ◽  
Vol 168 ◽  
pp. 00036
Author(s):  
Pavlo Saik ◽  
Roman Dychkovskyi ◽  
Vasyl Lozynskyi ◽  
Volodymyr Falshtynskyi ◽  
Edgar Cabana ◽  
...  

Topical issues of the possibilities for changes in the coal extraction technology in terms of Stepova mine of Lvivvuhillia SE have been highlighted. Analysis of the current state of mining operations has been carried out. Design solutions as for introduction of the coal gasification technology in the life cycle of the mining enterprise has been proposed on the basis of the analytical, experimental, and industrial studies; the technology has been described. Percentage ratio of the output of combustion generator gases (Н2, СО, СН4) has been identified; gas combustion value and efficiency of the process depending on certain changes in the blowing mixture composition supplied into the underground gas generator have been determined. Heat balance of the process of underground coal gasification has been studied making it possible to evaluate its energy balance. The algorithm to determine coal reserves in a mine pillar to be gasified has been proposed. Indices of the output of combustion generator gases from the gasification column have been defined. The relevant issues have been studied of ensuring the possibility of underground coal gasification technology when uncovering the mining extracted area for the underground gas generator operation.

2017 ◽  
Vol 25 ◽  
pp. 118-127
Author(s):  
Vasyl Lozynskyi

The purpose of this paper is substantiating of efficiency during application of borehole underground coal gasification technology based on target coal seam geology. Comprehensive methodology that included analytical calculation is implemented in the work. To determine the efficiency of coal seam gasification in faulting areas, an economic calculation method was developed. The obtained conditions of coal seam allow to provide rational order of mine workings. Conclusions regarding the implementation of the offered method are made on the basis of undertaken investigations. The obtained results with sufficient accuracy in practical application will allow consume coal reserves in the faulting zones using environmentally friendly conversion technology to obtain power and chemical generator gas, chemicals and heat.


2013 ◽  
Vol 22 (35) ◽  
pp. 9
Author(s):  
John William Rosso Murillo

<p>In situ coal gasification technology (Underground Coal Gasification–UCG–) is an alternative to the traditional exploitation, due to it allows to reach the today’s inaccessible coal reserves’ recovery, to conventional mining technologies. In this article I answer the question on how the today’s reserves available volume, can be increased, given the possibility to exploit further and better the same resources. Mining is an important wealth resource in Colombia as a contributor to the national GDP. According with the Energy Ministry (Ministerio de Minas y Energía) [1] mining has been around 5% of total GDP in the last years. This is a significant fact due to the existence of a considerable volume of reserves not accounted for (proved reserves at year 2010 were 6.700 million of tons. Source: INGEOMINAS and UPME), and the coal future role’s prospect, in the world energy production.</p>


2019 ◽  
Vol 23 (6 Part B) ◽  
pp. 4067-4081
Author(s):  
David Petrovic ◽  
Lazar Kricak ◽  
Milanka Negovanovic ◽  
Stefan Milanovic ◽  
Jovan Markovic ◽  
...  

In the name of a better and safer energy future, it is our responsibility to focus our knowledge and activities to save on imported liquid and gas fossil fuels, as well as coal on which energy security of Serbia is based. The rationalization in the use of available energy resources certainly positively affects economy and the environment of a country. This paper indicates motivations for the application of the underground coal gasification process, as well as surface gasification for Serbia. The goal is to burn less coal, while simultaneously utilizing more gas from the onsite underground coal gasification, or by gasification in various types of gas generators mounted on the surface. In both cases, from the obtained gas, CO2, NOx, and other harmful gases are extracted in scrubbers. This means that further gas combustion byproducts do not pollute the atmosphere in comparison with traditional coal combustion. In addition, complete underground coal gasification power requirements could be offset by the onsite solar photovoltaic power plant, which furthermore enhances environmental concerns of the overall coal utilization.


2014 ◽  
Vol 59 (3) ◽  
pp. 575-590 ◽  
Author(s):  
Piotr Czaja ◽  
Paweł Kamiński ◽  
Jerzy Klich ◽  
Antoni Tajduś

Abstract Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind’s natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to become a source of additional energy for the economy. It should be noted, however, that the shaft-drilling method cannot be considered as an alternative to conventional methods of coal extraction, but rather as a complementary and cheaper way of utilizing resources located almost beyond the technical capabilities of conventional extraction methods due to the associated natural hazards and high costs of combating them. This article presents a completely different approach to the issue of underground coal gasification. Repurposing of the already fully depreciated mining infrastructure for the gasification process may result in a large value added of synthesis gas production and very positive economic effect.


2013 ◽  
Vol 47 (4) ◽  
pp. 2090
Author(s):  
N. Koukouzas ◽  
I. Katsimpardi ◽  
D. Merachev

The sustainable and environmentally friendly energy production has been a major issue of the world energy sector in recent years. Coal is a major fossil fuel that provides approximately 25% of the total energy demand worldwide; coal reserves still remain significant, although in several cases its exploitation trends to be economically marginal. Underground Coal Gasification (UCG) has been identified as a technology which can bridge the gap between energy production and environmental and financial sustainability. Several UCG trials have taken place, although, there are still questions relative to their safety, performance and applicability. To that direction, modelling can prove to be a very effective and practical tool for the prediction of the project performance and the reduction of the risk involved. UCG is a complex process which incorporates mechanical and chemical processes thus modelling is complex since it demands coupling the aforementioned processes. The current study aims at investigating the applicability of the UCG process in a Bulgarian coal site through 2D modelling. The proposed approach uses FLAC software as a modelling tool and attempts to combine thermal and mechanical effects during the gasification process. Several simulation runs have taken place in an attempt to quantify the effect of the different mechanical and thermal properties of the surrounding rocks to the UCG process, the environmental effects and the stability of the geological formations.


2017 ◽  
Vol 25 ◽  
pp. 1-10 ◽  
Author(s):  
Gennadiy Pivnyak ◽  
Roman Dychkovskyi ◽  
Volodymyr Falshtynskyi ◽  
Edgar Cáceres Cabana

Energy efficiency of coal gasification with possible utilization of mining wastes within ecologically closed gas generator cycle has been considered. Technical and technological performance of such gas generator and mechanism of material and heat balance on the basis of the available analytical methods and practices as well as the developed author software have been proposed. Heat carrier formed in the process of coal gasification has been used for the utilization. Temperature of the utilization process within the industrially expedient limits being supported with the help of either activation or attenuation of the gasification process. After specific treatment, organogenic waste and domestic wastes are utilized by means of thermal decomposition within a gas generator. Economic evaluation of the proposed means confirms the expediency of their implementation in mines with industrial and balanced coal reserves as well as within the areas where this energetic source has already been already mined out. Results of this investigation were partially presented on international scientific and practical conference “Forum of Miners - 2017”. They contain the researches, which were conducted within the project GP – 489, financed by Ministry of Education and Science of Ukraine.


2021 ◽  
Vol 303 ◽  
pp. 01059
Author(s):  
Vladimir Makarov ◽  
Valery Kolesnikov ◽  
Dawid Szurgacz

At the present time on the fields of operating and closed-down mines there are sections of open-pit operations. However, the adopted technology does not meet environmental requirements, there are no scientific recommendations on the technology of open-pit mining in hazardous areas of mine fields, there is no substantiation of the boundary contours of open-pit mining. A characteristic feature of depleted mine fields is the disturbed rock mass and the lack of concentrated coal reserves within their boundaries. In fact, coal reserves are represented in the form of fragmentary volumes of safety pillars and substandard reserves in places of geological disturbances. Limitation of mine fields in terms of various infrastructure objects imposes special requirements for mining operations. In these conditions it is not possible to apply the classic mining systems and technologies. This predetermines the necessity to develop new technological solutions. Therefore, scientific research on justification of technology for extraction of remaining reserves of coal after underground development of inclined and steep-sloping coal deposits with simultaneous reclamation of disturbed lands is actual.


Sign in / Sign up

Export Citation Format

Share Document