scholarly journals Underground coal gasification technology impact on coal reserves in Colombia

2013 ◽  
Vol 22 (35) ◽  
pp. 9
Author(s):  
John William Rosso Murillo

<p>In situ coal gasification technology (Underground Coal Gasification–UCG–) is an alternative to the traditional exploitation, due to it allows to reach the today’s inaccessible coal reserves’ recovery, to conventional mining technologies. In this article I answer the question on how the today’s reserves available volume, can be increased, given the possibility to exploit further and better the same resources. Mining is an important wealth resource in Colombia as a contributor to the national GDP. According with the Energy Ministry (Ministerio de Minas y Energía) [1] mining has been around 5% of total GDP in the last years. This is a significant fact due to the existence of a considerable volume of reserves not accounted for (proved reserves at year 2010 were 6.700 million of tons. Source: INGEOMINAS and UPME), and the coal future role’s prospect, in the world energy production.</p>

2013 ◽  
Vol 47 (4) ◽  
pp. 2090
Author(s):  
N. Koukouzas ◽  
I. Katsimpardi ◽  
D. Merachev

The sustainable and environmentally friendly energy production has been a major issue of the world energy sector in recent years. Coal is a major fossil fuel that provides approximately 25% of the total energy demand worldwide; coal reserves still remain significant, although in several cases its exploitation trends to be economically marginal. Underground Coal Gasification (UCG) has been identified as a technology which can bridge the gap between energy production and environmental and financial sustainability. Several UCG trials have taken place, although, there are still questions relative to their safety, performance and applicability. To that direction, modelling can prove to be a very effective and practical tool for the prediction of the project performance and the reduction of the risk involved. UCG is a complex process which incorporates mechanical and chemical processes thus modelling is complex since it demands coupling the aforementioned processes. The current study aims at investigating the applicability of the UCG process in a Bulgarian coal site through 2D modelling. The proposed approach uses FLAC software as a modelling tool and attempts to combine thermal and mechanical effects during the gasification process. Several simulation runs have taken place in an attempt to quantify the effect of the different mechanical and thermal properties of the surrounding rocks to the UCG process, the environmental effects and the stability of the geological formations.


2017 ◽  
Vol 25 ◽  
pp. 118-127
Author(s):  
Vasyl Lozynskyi

The purpose of this paper is substantiating of efficiency during application of borehole underground coal gasification technology based on target coal seam geology. Comprehensive methodology that included analytical calculation is implemented in the work. To determine the efficiency of coal seam gasification in faulting areas, an economic calculation method was developed. The obtained conditions of coal seam allow to provide rational order of mine workings. Conclusions regarding the implementation of the offered method are made on the basis of undertaken investigations. The obtained results with sufficient accuracy in practical application will allow consume coal reserves in the faulting zones using environmentally friendly conversion technology to obtain power and chemical generator gas, chemicals and heat.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3718
Author(s):  
Stefan Zelenak ◽  
Erika Skvarekova ◽  
Andrea Senova ◽  
Gabriel Wittenberger

Countries of the European Union have stated transition to carbon-neutral economy until the year of 2050. Countries with a higher share of coal-fired power generation currently have no solution to end their combustion and use clean, emission-free energy immediately. The solution to this problem in the energy industry appears to be the increased use of natural gas, which significantly reduces CO2 emissions. In this article, we investigated the possibility of using coal in situ, using UCG (underground coal gasification) technology. We focused on verified geological, hydrogeological, and tectonic information about the selected brown coal deposit in Slovakia. This information has been assessed in research projects in recent years at the Technical University. From the abovementioned information, possible adverse factors were evaluated. These factors affect the rock environment around the underground generator by UCG activity. As part of the process management, measures were proposed to eliminate the occurrence of pollution and adverse effects on the environment. In the final phase of the UCG technology, we proposed to carry out, in the boreholes and in the generator cavity, water flushing and subsequent grouting. The proposed are suitable materials for solidification and stabilization. Results of this article´s solutions are crucial in the case of usage of this so-called clean technology, not only in Slovakia but also worldwide.


2020 ◽  
Vol 168 ◽  
pp. 00036
Author(s):  
Pavlo Saik ◽  
Roman Dychkovskyi ◽  
Vasyl Lozynskyi ◽  
Volodymyr Falshtynskyi ◽  
Edgar Cabana ◽  
...  

Topical issues of the possibilities for changes in the coal extraction technology in terms of Stepova mine of Lvivvuhillia SE have been highlighted. Analysis of the current state of mining operations has been carried out. Design solutions as for introduction of the coal gasification technology in the life cycle of the mining enterprise has been proposed on the basis of the analytical, experimental, and industrial studies; the technology has been described. Percentage ratio of the output of combustion generator gases (Н2, СО, СН4) has been identified; gas combustion value and efficiency of the process depending on certain changes in the blowing mixture composition supplied into the underground gas generator have been determined. Heat balance of the process of underground coal gasification has been studied making it possible to evaluate its energy balance. The algorithm to determine coal reserves in a mine pillar to be gasified has been proposed. Indices of the output of combustion generator gases from the gasification column have been defined. The relevant issues have been studied of ensuring the possibility of underground coal gasification technology when uncovering the mining extracted area for the underground gas generator operation.


2013 ◽  
Vol 295-298 ◽  
pp. 3129-3136 ◽  
Author(s):  
Li Mei Zhao ◽  
Jie Liang ◽  
Lu Xin Qian

For testing the feasibility of in-situ exploring oil shale by underground coal gasification. Based on the specification analysis of coal and oil shale, through simulating the occurrence state and characteristics of coal and oil shale, the underground Co-gasification model test was carried-out. In different gasification conditions (φ(O2) are 30%、35%、40%、45%、50% and oxygen/steam) ,The temperature-field extend rules of coal and oil shale、the separate-out rules of oil shale production and influence of oil shale on the quality of gas were studied. The results show that: when φ(O2) is 40-45%, temperature-rising rate is 7°C/min、extend rate of gasification face is 0.036m/h, the extend of temperature field is continuous and stable, the temperature change of oil shale and coal are synchronously , the high temperature of oil shale can up to 1000 °C above, that can satisfied the requirement of oil-gas collecting; and the same time , The heat-value of syngas improved 26.37%; The technological parameter was obtained in this test.


1975 ◽  
Vol 15 (05) ◽  
pp. 425-436 ◽  
Author(s):  
C.F. Magnani ◽  
S.M. Farouq Ali

Abstract This investigation focuses on mathematical modeling of the process of underground gasification of coal by the stream method. A one-dimensional, steady-state model consisting of five coupled differential equations was formulated, and the solution, extracted analytically, was used to develop closed-form expressions for the parameters influencing coal gasification. The model then was used for interpreting field performance curves, predicting the results of The performance curves, predicting the results of The field tests, and ascertaining the over-all process sensitivity to the input variables. The usefulness of the model was shown by establishing the parameters influencing the success or failure of parameters influencing the success or failure of an underground gasification project. Introduction One method of eliminating many of the technological and environmental difficulties encountered during the production of synthetic gas through aboveground coal gasification involves gasifying cod in situ. This process, known as underground coal gasification, was first proposed in 1868 by Sir William Siemens and is based on the controlled combustion of coal in situ. This in-situ combustion results in the production of an artificial or synthetic gas that is rich in carbon dioxide, carbon monoxide, hydrogen, and hydrocarbon gases. Despite the fact that reaction stoichiometry is a moot element of underground coal gasification, it is nonetheless believed thatcarbon dioxide is formed by the partial oxidation of coal,carbon monoxide is generated by the subsequent reduction of carbon dioxide, andthe hydrogen and hydrocarbon gases result from the water-gas reaction and carbonization of coal, respectively. To effect the controlled combustion of coal in situ, the coal seam first must be ignited and a means must be provided for supporting combustion (through injection of a suitable gasification agent) and producing the gases generated underground. Fig. 1 presents a schematic diagram of an underground gasification system that complies with these requirements. This approach to gasifying coal is known as the stream or channel method and necessitates drilling two parallel galleries, one serving as an injection gas inlet and the other as a producer gas outlet. These wells are then linked by a borehole drilled horizontally through the coal seam. Ignition occurs in the coal seam at the gas inlet and proceeds in the direction of flow. The combustion front thus generated moves essentially perpendicular to the direction of gas flow. perpendicular to the direction of gas flow.Since the technological inception of underground gasification, over 1,500 publications have appeared in the literature that bear testimony to the absence of a complete, legitimate, theoretical analysis of the underground gasification process. Given this observation, it is the basis of this paper that progress in underground coal-gasification research progress in underground coal-gasification research has suffered from the absence of "interpretative theory"; that is, it has suffered from a lack of logical, physical, and mathematical analysis of the governing and underlying aerothermochemical principles. The difficulties in formulating a principles. The difficulties in formulating a mathematical model adequately describing the numerous phenomena involved during coal gasification are indeed formidable. SPEJ P. 425


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5816
Author(s):  
Krzysztof Kapusta

Two experimental simulations of underground coal gasification (UCG) processes, using large bulk samples of lignites, were conducted in a surface laboratory setup. Two different lignite samples were used for the oxygen-blown experiments, i.e., “Velenje” meta-lignite (Slovenia) and “Oltenia” ortho-lignite (Romania). The average moisture content of the samples was 31.6wt.% and 45.6wt.% for the Velenje and Oltenia samples, respectively. The main aim of the study was to assess the suitability of the tested lignites for the underground coal gasification process. The gas composition and its production rates, as well as the temperatures in the artificial seams, were continuously monitored during the experiments. The average calorific value of gas produced during the Velenje lignite experiment (6.4 MJ/Nm3) was much higher compared to the result obtained for the experiment with Oltenia lignite (4.8 MJ/Nm3). The Velenje lignite test was also characterized by significantly higher energy efficiency, i.e., 44.6%, compared to the gasification of Oltenia lignite (33.4%). The gasification experiments carried out showed that the physicochemical properties of the lignite used considerably affect the in situ gasification process. Research also indicates that UCG can be considered as a viable option for the extraction of lignite deposits; however, lignites with a lower moisture content and higher energy density are preferred, due to their much higher process efficiency.


2019 ◽  
Vol 23 (6 Part B) ◽  
pp. 4067-4081
Author(s):  
David Petrovic ◽  
Lazar Kricak ◽  
Milanka Negovanovic ◽  
Stefan Milanovic ◽  
Jovan Markovic ◽  
...  

In the name of a better and safer energy future, it is our responsibility to focus our knowledge and activities to save on imported liquid and gas fossil fuels, as well as coal on which energy security of Serbia is based. The rationalization in the use of available energy resources certainly positively affects economy and the environment of a country. This paper indicates motivations for the application of the underground coal gasification process, as well as surface gasification for Serbia. The goal is to burn less coal, while simultaneously utilizing more gas from the onsite underground coal gasification, or by gasification in various types of gas generators mounted on the surface. In both cases, from the obtained gas, CO2, NOx, and other harmful gases are extracted in scrubbers. This means that further gas combustion byproducts do not pollute the atmosphere in comparison with traditional coal combustion. In addition, complete underground coal gasification power requirements could be offset by the onsite solar photovoltaic power plant, which furthermore enhances environmental concerns of the overall coal utilization.


Sign in / Sign up

Export Citation Format

Share Document