scholarly journals Exponential Functions for Modelling Hysteresis of Soil-Water Characteristic Curves

2020 ◽  
Vol 195 ◽  
pp. 02002
Author(s):  
Alfrendo Satyanaga ◽  
Jong Kim ◽  
Sung-Woo Moon ◽  
Martin Wijaya

Soil – water characteristic curve (SWCC) is an important property of unsaturated soils that can be used to estimate various parameters to describe unsaturated soil behavior. SWCC is reported to be hysteretic because the water content at a given suction in the wetting process is less than that in the drying process. In order to simulate the hysteretic characteristics of SWCC, many models have been proposed by different researchers. However, majority of the existing models are complex and their parameters are not related to the physical significances of SWCC variables. In this study, the new equations are developed to model drying and wetting SWCC. In addition, some indexes are proposed to estimate the wetting SWCC from drying SWCC. The new equations for SWCCs were evaluated with the laboratory data from published literatures. The results showed that the proposed equations performed well in modelling drying and wetting SWCC. The new equation has less parameters than the existing published equation.

2010 ◽  
Vol 168-170 ◽  
pp. 1285-1288
Author(s):  
Dong Lin Wang

Soil water characteristic curve is one of important topics of unsaturated soils. Pressure plate extractor and GDS unsaturated triaxial apparatus are used to study influencing factors including types of soils and net mean stress. Through method of least-squares, Fredlund five-parameter model were employed to fit soil-water characteristic curves. The results show that model provided a satisfactory fit to the experimental data. Through an analysis of influencing factors, we find that not only physical condition of samples but also external stress condition can affect the shape of soil water characteristic curve.


Author(s):  
Pan Hu ◽  
Qing Yang ◽  
Maotian Luan

The soil-water characteristic curve (SWCC) is a widely used experimental means for assessing fundamental properties of unsaturated soils for a wide range of soil suction values. The study of SWCC is helpful because some properties of unsaturated soils can be predicted from it. Nowadays, much attention has been paid to the behaviours of highly compacted bentonite-sand mixtures used in engineering barriers for high level radioactive nuclear waste disposal. It is very important to study the various performances of bentonite-sand mixtures in order to insure the safety of high-level radioactive waste (HLW) repository. After an introduction to vapor phase method and osmotic technique, a laboratory study has been carried out on compacted bentonite-sand mixtures. The SWCC of bentonite-sand mixtures has been obtained and analyzed. The results show that the vapor phase method and osmotic technique is suitable to the unsaturated soils with high and low suction.


1999 ◽  
Vol 36 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Daud W Rassam ◽  
David J Williams

A relationship describing the shear-strength profile of a desiccating soil deposit is essential for the purpose of analysis, especially when a numerical method is adopted where each zone in a discretised grid is assigned an elevation-dependent shear-strength value. The matric-suction profile of a desiccating soil deposit is nonlinear. Up to the air-entry value, an increase in matric suction is associated with a linear increase in shear strength. Beyond air entry, as the soil starts to desaturate, a nonlinear increase in shear strength occurs. The soil-water characteristic curve is stress dependent, as is the shear-strength gain as matric suction increases. In this paper, a three-dimensional, nonlinear regression analysis showed that a power-additive function is suitable to describe the variation of the shear strength of unsaturated soils with matric suction. The proposed function incorporates the effect of normal stress on the contribution of matric suction to the shear strength.Key words: air-entry value, matric suction, nonlinear regression, soil-water characteristic curve, tailings, unsaturated shear strength.


Author(s):  
Shaoyang Dong ◽  
Yuan Guo ◽  
Xiong (Bill) Yu

Hydraulic conductivity and soil-water retention are two critical soil properties describing the fluid flow in unsaturated soils. Existing experimental procedures tend to be time consuming and labor intensive. This paper describes a heuristic approach that combines a limited number of experimental measurements with a computational model with random finite element to significantly accelerate the process. A microstructure-based model is established to describe unsaturated soils with distribution of phases based on their respective volumetric contents. The model is converted into a finite element model, in which the intrinsic hydraulic properties of each phase (soil particle, water, and air) are applied based on the microscopic structures. The bulk hydraulic properties are then determined based on discharge rate using Darcy’s law. The intrinsic permeability of each phase of soil is first calibrated from soil measured under dry and saturated conditions, which is then used to predict the hydraulic conductivities at different extents of saturation. The results match the experimental data closely. Mualem’s equation is applied to fit the pore size parameter based on the hydraulic conductivity. From these, the soil-water characteristic curve is predicted from van Genuchten’s equation. The simulation results are compared with the experimental results from documented studies, and excellent agreements were observed. Overall, this study provides a new modeling-based approach to predict the hydraulic conductivity function and soil-water characteristic curve of unsaturated soils based on measurement at complete dry or completely saturated conditions. An efficient way to measure these critical unsaturated soil properties will be of benefit in introducing unsaturated soil mechanics into engineering practice.


Author(s):  
Jie Zhang ◽  
Shuai Yang ◽  
Lulu Zhang ◽  
Mingliang Zhou

The soil-water characteristic curve (SWCC) is a significant prerequisite for studying the mechanical properties of unsaturated soil. As experimental measurement of the SWCC is time-consuming, empirical methods have been suggested to estimate the SWCC. However, the uncertainty associated with SWCC can be substantial. In this paper, a hybrid method based on Bayes’ theorem is suggested to estimate the SWCC, where an empirical method can be used to provide prior knowledge about the SWCC, and a limited quantity of measured data is used to update the SWCC. The Bayesian model is then solved with a Markov Chain Monte Carlo simulation. Through the suggested method, the valuable information provided by the empirical method can be combined with the measurement data. The suggested method can not only provide the best estimate about the SWCC, but also account for the associated uncertainty. Also, the effect of more measured points on the estimation of SWCC can be quantified. The suggested method provides a practical means to estimate the SWCC using a limited amount of data.


2007 ◽  
Vol 44 (3) ◽  
pp. 266-275 ◽  
Author(s):  
Trinh Minh Thu ◽  
Harianto Rahardjo ◽  
Eng-Choon Leong

Measurement of the soil-water characteristic curve (SWCC) in the laboratory is commonly conducted under zero confining pressure. However, in the field, the soil is under a confining stress. Therefore, it is important to study the effects of the confining stress on SWCC. In addition, the consolidation curve is normally generated under saturated conditions. However, the soil above the water table is usually unsaturated. Hence, it is also necessary to investigate the effects of matric suction on the characteristics of the consolidation curves. This paper presents the SWCCs under different net confining stresses and the isotropic consolidation curves under different matric suctions that describe the volume change characteristics of unsaturated soils with respect to stress state variables, net normal stress, and matric suction. A series of SWCCs was determined for statically compacted silt specimens in a triaxial cell apparatus under different net confining stresses. Isotropic consolidation tests under different matric suctions were also carried out. The results of the SWCC tests show that the air-entry value increased with increasing net confining stress. The yield points (i.e., yield suction, s0) obtained from the SWCC tests also increased with increasing net confining stress. The results of isotropic consolidation tests indicate the strong influence of matric suction on compressibility and stiffness of the compacted silt specimens.Key words: soil-water characteristic curve, isotropic consolidation, pore-water pressure, volume change, NTU mini suction probe, matric suction.


2012 ◽  
Vol 170-173 ◽  
pp. 3050-3053
Author(s):  
Cui Ran Liu ◽  
Jin Jun Guo

With the improved triaxial equipment, the tests of research of the relationships between matrix suction and water content are performed And based on the test data, the curves between matrix suction and water contents under different confining pressures are drawn and the change rule between them are analyzed. And then the function between them is simulated out. Through the soil-water characteristic curve, the permeability coefficient of unsaturated soil can be calculated and the shear strength of unsaturated soil can be predicted. These results are important to research the engineering properties of unsaturated soil.


2012 ◽  
Vol 256-259 ◽  
pp. 108-111
Author(s):  
Seboong Oh ◽  
Ki Hun Park ◽  
Oh Kyun Kwon ◽  
Woo Jung Chung ◽  
Kyung Joon Shin

The hypothesis on effective stress of unsaturated soils is validated by consolidation strength results of triaxial tests for the compacted residual soil. The effective stress can describe the unsaturated soil behavior, which was defined from shear strength or from soil water characteristic curves. Since the effective stress from consolidation agrees with that from the shear strength, the effective stress from soil water retention curve could describe the unsaturated behavior consistently on both consolidation path and stress at failure. The effective stress can describe the entire unsaturated behavior from consolidation to failure.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Siti Jahara Matlan ◽  
Muhammad Mukhlisin ◽  
Mohd Raihan Taha

Soil-water characteristic curves (SWCCs) are important in terms of groundwater recharge, agriculture, and soil chemistry. These relationships are also of considerable value in geotechnical and geoenvironmental engineering. Their measurement, however, is difficult, expensive, and time-consuming. Many empirical models have been developed to describe the SWCC. Statistical assessment of soil-water characteristic curve models found that exponential-based model equations were the most difficult to fit and generally provided the poorest fit to the soil-water characteristic data. In this paper, an exponential-based model is devised to describe the SWCC. The modified equation is similar to those previously reported by Gardner (1956) but includes exponential variable. Verification was performed with 24 independent data sets for a wide range of soil textures. Prediction results were compared with the most widely used models to assess the model’s performance. It was proven that the exponential-based equation of the modified model provided greater flexibility and a better fit to data on various types of soil.


Sign in / Sign up

Export Citation Format

Share Document