scholarly journals Performance assessment of integrated energy systems for the production of renewable hydrogen energy carriers

2020 ◽  
Vol 197 ◽  
pp. 01007
Author(s):  
Francesco Lonis ◽  
Vittorio Tola ◽  
Giorgio Cau

To guarantee a smooth transition to a clean and low-carbon society without abandoning all of a sudden liquid fuels and products derived from fossil resources, power-to-liquids processes can be used to exploit an excess of renewable energy, producing methanol and dimethyl ether (DME) from the conversion of hydrogen and recycled CO2. Such a system could behave as an energy storage system, and/or a source of fuels and chemicals for a variety of applications in several industrial sectors. This paper concerns the conceptual design, performance analysis and comparison of small-scale decentralised integrated energy systems to produce methanol and DME from renewable hydrogen and captured CO2. Renewable hydrogen is produced exploiting excess RES. Water electrolysis is carried out considering two different technologies alternatively: commercially mature low temperature alkaline electrolysers (AEL) and innovative high temperature solid oxide electrolysers (SOEC). A first conversion of hydrogen and CO2 takes place in a catalytic reactor where methanol is synthesised through the hydrogenation process. Methanol is then purified in a distillation column. Depending on the final application, methanol can be further converted into DME through catalytic dehydration in another catalytic reactor. The chemical (either methanol or DME) is stored at ambient conditions and used as necessary. To predict the performance of the main components and of the overall system, numerical simulation models were developed using the software Aspen Plus. The performance and efficiencies of each section and of the overall systems were evaluated through extensive mass and energy balances. Globally, the overall power-to-liquids efficiency was found to be above 0.55 for all the different configurations, both considering a powerto-methanol or a power-to-DME process.

Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 581
Author(s):  
Jonas Hinker ◽  
Thomas Wohlfahrt ◽  
Emily Drewing ◽  
Sergio Contreras Paredes ◽  
Daniel Mayorga González ◽  
...  

Energy conversion and distribution of heat and electricity is characterized by long planning horizons, investment periods and depreciation times, and it is thus difficult to plan and tell the technology that optimally fits for decades. Uncertainties include future energy prices, applicable subsidies, regulation, and even the evolution of market designs. To achieve higher adaptability to arbitrary transition paths, a technical concept based on integrated energy systems is envisioned and described. The problem of intermediate steps of evolution is tackled by introducing a novel paradigm in urban infrastructure design. It builds on standardization, modularization and economies of scale for underlying conversion units. Building on conceptual arguments for such a platform, it is then argued how actors like (among others) municipalities and district heating system operators can use this as a practical starting point for a manageable and smooth transition towards more environmental friendly supply technologies, and to commit to their own pace of transition (bearable investment/risk). Merits are not only supported by technical arguments but also by strategical and societal prospects like technology neutrality and availability of real options.


Author(s):  
N. P. Brandon ◽  
Z. Kurban

In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors. This article is part of the themed issue ‘The challenges of hydrogen and metals’.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 448 ◽  
Author(s):  
Zhiyuan Liu ◽  
Hang Yu ◽  
Rui Liu ◽  
Meng Wang ◽  
Chaoen Li

The analysis of energy configuration in the planning of data-center-park-integrated energy systems (DCP-IESs) has become an enormous challenge, owing to multi-energy complementarity, energy cascade use, and energy security. In this study, a configuration model of DCP-IESs was established to obtain the economic and low-carbon energy uses of the data centers, based on mixed integer linear programming. In the model, carbon emissions were converted to economic indicators through carbon pricing. Then, the configuration model was modified according to the security of the proposed device switching logic, and the Markov-based reliability estimation method was used to ensure the redundant design of the configuration. Using the new energy configuration method, the DCP-IES configuration scheme could be obtained under economical, low-carbon, and high reliability conditions. A data center park in Shanghai was selected as a case study, and the results are as follows: it will only take 2.88 years for the economics of DCP-IES to reach those of traditional data center energy systems. Additionally, the use of configuration model in DCP-IES would result in a reduction in annual carbon emissions of 39,323 tons, with a power usage effectiveness of 1.388, whereas an increase in reliability results in an increasingly faster increase in the initial investment cost.


Sign in / Sign up

Export Citation Format

Share Document