scholarly journals Optimal operation of regional integrated energy system based on demand-side load response

2020 ◽  
Vol 213 ◽  
pp. 02005
Author(s):  
Peng Fang ◽  
Cui Mao ◽  
Yuping Chen ◽  
Shan Zhou ◽  
Rui You ◽  
...  

The integrated energy system (IES) has the advantage of improving energy utilization and promoting energy flexibility. From the perspective of demand-side load response, this paper establishes demand-side power, thermal load response, and natural gas demand response models, and then constructs the objective function of the lowest operating cost of the regional IES for combined electric heating and gas supply, using Cplex to perform optimization. Finally, a typical northern park is taken as an example to analyze and verify the feasibility of the model and algorithm. The analysis of the case shows that considering the electric heating gas demand side response will be better than not considering or considering only the single and both responses, not only can reduce operating costs, achieve peak reduction and valley filling, but also reduce abandonment of wind and energy, and increase energy utilization rate.

2020 ◽  
Vol 213 ◽  
pp. 02038
Author(s):  
Peng Fang ◽  
Cui Mao ◽  
Yuping Chen ◽  
Shan Zhou ◽  
Rui You ◽  
...  

As the physical carrier of the energy Internet, the integrated energy system has become the focus of current research. Considering the renewable energy and demand side load fluctuations, using the price type and the alternative demand side response characteristics, a day-ahead and intraday optimization scheduling model that takes into account the demand side response is established, in which the intraday, according to the difference of electricity, cold/heat and natural gas scheduling time, a three-layer rolling optimization scheduling model is proposed. The example analysis shows that this model can suppress the fluctuation of renewable energy and load in the day, improve the stability of the system, and further reduce the operating cost of the system.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 600
Author(s):  
Bin Ouyang ◽  
Lu Qu ◽  
Qiyang Liu ◽  
Baoye Tian ◽  
Zhichang Yuan ◽  
...  

Due to the coupling of different energy systems, optimization of different energy complementarities, and the realization of the highest overall energy utilization rate and environmental friendliness of the energy system, distributed energy system has become an important way to build a clean and low-carbon energy system. However, the complex topological structure of the system and too many coupling devices bring more uncertain factors to the system which the calculation of the interval power flow of distributed energy system becomes the key problem to be solved urgently. Affine power flow calculation is considered as an important solution to solve uncertain steady power flow problems. In this paper, the distributed energy system coupled with cold, heat, and electricity is taken as the research object, the influence of different uncertain factors such as photovoltaic and wind power output is comprehensively considered, and affine algorithm is adopted to calculate the system power flow of the distributed energy system under high and low load conditions. The results show that the system has larger operating space, more stable bus voltage and more flexible pipeline flow under low load condition than under high load condition. The calculation results of the interval power flow of distributed energy systems can provide theoretical basis and data support for the stability analysis and optimal operation of distributed energy systems.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 477 ◽  
Author(s):  
Xueying Song ◽  
Hongyu Lin ◽  
Gejirifu De ◽  
Hanfang Li ◽  
Xiaoxu Fu ◽  
...  

An integrated energy system (IES) involving a large number of decision-makers causes problems of bad coordination between energy sub-networks and the IES and it is not able to fully consider the multi-energy complementarity among multiple decision-makers. In this context, firstly, this paper constructs an energy optimal dispatching model of an IES based on uncertain bilevel programming. The upper model takes the transformation matrix of energy hubs as the upper decision-maker, taking the minimum operation cost of the IES in the form of confidence as the objective function; the lower model takes each optimal operation plan of the electric power sub-network, the thermal energy sub-network, and the gas energy sub-network as the lower decision-makers, aiming at the operation economy of each sub-network and considering their operation as necessary constraints. Secondly, a firefly algorithm with chaotic search and an improved light intensity coefficient is designed to improve the proposed model. An empirical analysis was conducted on a pilot area of an integrated energy system in Hebei Province. The results show the following: (1) The typical daily operating cost of the integrated energy system in winter is lower than that in summer; (2) under the same load level, the typical winter and summer running costs of the integrated energy system are lower than that of the traditional microgrid; (3) compared with the particle swarm optimization algorithm, the improved firefly algorithm proposed in the paper has obvious advantages both in terms of running cost and solution time; and (4) when the confidence of the objective function and the constraints increases, the operating cost of various schemes also increase. The above results validate the effectiveness of the energy optimal dispatching model of the IES and the economy of the system operation under the multiple decision-maker hierarchy.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012017
Author(s):  
Yan Liang ◽  
Yao Wang ◽  
Hongli Liu ◽  
Peng Wang ◽  
Yongming Jing ◽  
...  

Abstract Due to the high cost of energy storage part in traditional integrated energy systems, the demand response effect is poor. The paper proposes electrolytic water hydrogen production technology and applies it to the optimal operation of integrated energy system. By optimizing the operating cost of the system through adaptive genetic algorithm, we show that when the load matching degree was increased from 50% to 70%, the system operating cost was reduced by about 15.8%, and the carbon displacement was decreased by about 35%. System operating costs, carbon emissions, and the amount of electrolytic water systems involved in the demand response have all decreased.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2765 ◽  
Author(s):  
Yongjie Zhong ◽  
Dongliang Xie ◽  
Suwei Zhai ◽  
Yonghui Sun

The integrated energy system (IES) has the characteristic of energy system integrated/multi-energy coupling that involves heat, cooling, electricity, natural gas, and various other energy forms, which can maximize the synergistic effects and complementary benefits among various energy forms and their comprehensive utilization. In this paper, based on energy hub (EH), the day-ahead hierarchical steady state optimal operation for IES is discussed, in which the coupling natural gas system, electricity transmission system, and district heating system are all considered. Firstly, the model architecture of EH with diverse storage devices, renewable energy, and different energy conversion equipment is proposed and the steady state mathematical model of different energy networks in IES is developed, respectively. Secondly, the day-ahead operating cost of EH is minimized by an optimizing strategy to maximize the benefits of all kinds of energy demand users, where different types of energy power input into EH can be obtained. Then, the day-ahead optimal operation mode for IES considering minimization of operating fuel cost index is proposed via an energy management system, which provides various energy power data that are uploaded from EH. Finally, numerical results are presented to verify the effectiveness and usefulness of the day-ahead hierarchical optimal operation and steady state calculation analysis for IES, which could further illustrate that the proposed optimal operation can meet the requirements of practical engineering applications.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012025
Author(s):  
Peifeng Li ◽  
Wei Wang ◽  
Jun Wei ◽  
Da Li ◽  
Chuan Long ◽  
...  

Abstract Flexible Load (FL) of electricity, heat and gas can improve the operation economy, flexibility and reliability of PIES. Aiming at the uncertainty of FL in the actual operation of the park integrated energy system (PIES), an optimal operation model of PIES with uncertainty of FL is proposed. Firstly, the uncertainty models of shiftable electric load and transferable load response are established, respectively. And then an adjustable heat load response model considering the uncertainty of solar radiation intensity is established. On this basis, an optimal operation model of PIES considering the uncertainty of the FL with the goal of maximizing the total revenue is constructed and is solved by the enhanced-interval linear programming method. Simulation indicate that FL can improve the operating economy of PIES and renewable energy consumption.


2021 ◽  
Vol 236 ◽  
pp. 02008
Author(s):  
LIU Dunnan ◽  
Gao Yuan ◽  
Wang Lingxiang ◽  
Liang Jiahao ◽  
Wang Zhenyu ◽  
...  

Considering the inherent characteristics of the park heating load, such as transmission delay, fuzzy heating comfort, etc., it can be used as a flexible load to participate in the optimal scheduling. Aiming at the minimum operation cost of the integrated energy system in the park, a collaborative optimal scheduling model of the park's integrated energy system with the participation of comprehensive demand response of electric heating load is constructed. The simulation results show that, compared with the optimization results of traditional power demand response, the application of integrated demand response of electric heating load improves the flexibility of production of cogeneration units in the park, reduces the total energy consumption cost of demand side users and the operation cost of the system on the premise of ensuring the balance of supply and demand of the system, improves the energy utilization efficiency, and realizes the environmental protection and economy of the system function.


Author(s):  
Sai Liu ◽  
Cheng Zhou ◽  
Haomin Guo ◽  
Qingxin Shi ◽  
Tiancheng E. Song ◽  
...  

AbstractAs a key component of an integrated energy system (IES), energy storage can effectively alleviate the problem of the times between energy production and consumption. Exploiting the benefits of energy storage can improve the competitiveness of multi-energy systems. This paper proposes a method for day-ahead operation optimization of a building-level integrated energy system (BIES) considering additional potential benefits of energy storage. Based on the characteristics of peak-shaving and valley-filling of energy storage, and further consideration of the changes in the system’s load and real-time electricity price, a model of additional potential benefits of energy storage is developed. Aiming at the lowest total operating cost, a bi-level optimal operational model for day-ahead operation of BIES is developed. A case analysis of different dispatch strategies verifies that the addition of the proposed battery scheduling strategy improves economic operation. The results demonstrate that the model can exploit energy storage’s potential, further optimize the power output of BIES and reduce the economic cost.


Sign in / Sign up

Export Citation Format

Share Document