scholarly journals Enhanced optical properties of perovskite thin film through material optimization for photovoltaic application

2021 ◽  
Vol 239 ◽  
pp. 00020
Author(s):  
SA Olaleru ◽  
JK Kirui ◽  
D Wamwangi ◽  
L Jhamba ◽  
R Erasmus ◽  
...  

The optical performance of the perovskite materials is enhanced through material optimization. This work seeks to establish the role of antisolvent and additive with new material composition on light absorption property. Due to this composition we extended the wavelengths to near Infrared range which is a suitable property for photovoltaic device. From the features of the film, optical parameters, together with anti-stoke shift and dielectric constant were calculated using Cauchy dispersion formalism. Based on our results, dielectric constant which is considered as a design parameter for photovoltaic cell and an unusual anti-stoke shift were observed. In sum, the optical properties are tied to material composition, morphology and technique used.

2021 ◽  
pp. 089270572110386
Author(s):  
Ali F Al-Shawabkeh ◽  
Ziad M Elimat ◽  
Khaleel N Abushgair

The goal of this study was to investigate the optical properties of the prepared polyvinyl chloride (PVC)/zinc oxide (ZnO) nanocomposite films. The PVC/ZnO nanocomposite films consist of the addition of different concentrations with both non-annealed ZnO nanoparticles and ZnO nanoparticles annealed at temperature of 700°C. The PVC/ZnO nanocomposite films by weight concentrations of (0 wt.%, 2.5 wt.%, 5 wt.% and 10 wt.%) have been prepared by the casting method. The optical absorbance and transmittance values of the composites films were measured in the wavelength range between (250 to 1100 nm) at room temperature by using the UV-1800 Shimadzu spectrophotometer. The optical properties (absorption coefficient, dielectric constant, refractive index, and optical conductivity) have been investigated by the ultraviolet (UV) spectrophotometer. The optical parameters (direct optical energy gap, excitation energy for electronic transitions, the dispersion energy, static refractive index, static dielectric constant, optical oscillator strengths, the moments of optical spectrum, linear optical susceptibility, third-order nonlinear optical susceptibility, nonlinear refractive index, high-frequency dielectric constant, the carrier concentration to the effective mass ratio, the long wavelength refractive index and the plasma frequency) were calculated. The results showed that the optical properties behavior of the PVC/ZnO nanocomposite films was found to be dependent on the ZnO concentration, and photon wavelength. In addition, the results of the study show that the optical parameters can be influenced by alter the concentration of the nonannealed and annealed a ZnO nanoparticle in the PVC polymer matrix.


2015 ◽  
Vol 08 (03) ◽  
pp. 1541005 ◽  
Author(s):  
M. S. Wróbel ◽  
A. P. Popov ◽  
A. V. Bykov ◽  
M. Kinnunen ◽  
M. Jędrzejewska-Szczerska ◽  
...  

Extensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with optical properties similar to those of living human tissues. Development and improvement of in vivo optical measurement systems requires the use of stable tissue phantoms with known characteristics, which are mainly used for calibration of such systems and testing their performance over time. Optical and mechanical properties of phantoms depend on their purpose. Nevertheless, they must accurately simulate specific tissues they are supposed to mimic. Many tissues and organs including head possess a multi-layered structure, with specific optical properties of each layer. However, such a structure is not always addressed in the present-day phantoms. In this paper, we focus on the development of a plain-parallel multi-layered phantom with optical properties (reduced scattering coefficient [Formula: see text] and absorption coefficient μa) corresponding to the human head layers, such as skin, skull, and gray and white matter of the brain tissue. The phantom is intended for use in noninvasive diffuse near-infrared spectroscopy (NIRS) of human brain. Optical parameters of the fabricated phantoms are reconstructed using spectrophotometry and inverse adding-doubling calculation method. The results show that polyvinyl chloride-plastisol (PVCP) and zinc oxide ( ZnO ) nanoparticles are suitable materials for fabrication of tissue mimicking phantoms with controlled scattering properties. Good matching was found between optical properties of phantoms and the corresponding values found in the literature.


The concept of ionicity has been developed by Phillips and Van Vechten from the dielectric analysis of the semiconductors and insulators to evaluate various bond parameters of binary tetrahedral (AIIBVI and AIIIBV) semiconductors. In this paper, an advance hypothesis of average atomic number of the elements in a compound has been used to evaluate intrinsic electronic and optical parameters such as ionic gap (Ec), average energy gap (Eg), crystal ionicity (fi) and dielectric constant (ϵ) of binary tetrahedral semiconductors.


2021 ◽  
Vol 13 (19) ◽  
pp. 4016
Author(s):  
Pasquale Sellitto ◽  
Giuseppe Salerno ◽  
Jean-François Doussin ◽  
Sylvain Triquet ◽  
François Dulac ◽  
...  

The characterisation of aerosol emissions from volcanoes is a crucial step towards the assessment of their importance for regional air quality and regional-to-global climate. In this paper we present, for the first time, the characterisation of aerosol emissions of the Stromboli volcano, in terms of their optical properties and emission flux rates, carried out during the PEACETIME oceanographic campaign. Using sun-photometric observations realised during a near-ideal full plume crossing, a plume-isolated aerosol optical depth of 0.07–0.08 in the shorter-wavelength visible range, decreasing to about 0.02 in the near infrared range, was found. An Ångström exponent of 1.40 ± 0.40 was also derived. This value may suggest the dominant presence of sulphate aerosols with a minor presence of ash. During the crossing, two separate plume sections were identified, one possibly slightly affected by ash coming from a mild explosion, and the other more likely composed of pure sulphate aerosols. Exploiting the full crossing scan of the plume, an aerosol emission flux rate of 9–13 kg/s was estimated. This value was 50% larger than for typical passively degassing volcanoes, thus pointing to the importance of mild explosions for aerosol emissions in the atmosphere.


2008 ◽  
Vol 35 (5) ◽  
pp. 792-796 ◽  
Author(s):  
敖荟兰 Ao Huilan ◽  
邢达 Xing Da ◽  
魏华江 Wei Huajiang ◽  
巫国勇 Wu Guoyong ◽  
鲁建军 Lu Jianjun

2003 ◽  
Vol 29 (8) ◽  
pp. 672-675 ◽  
Author(s):  
N. V. Kamanina ◽  
M. O. Iskandarov ◽  
A. A. Nikitichev

1988 ◽  
Vol 8 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Christina Skjöldebrand ◽  
Christina Ellbjär ◽  
Claes Göran Andersson ◽  
Tord S. Eriksson

2018 ◽  
Vol 57 (23) ◽  
pp. 6657 ◽  
Author(s):  
Leonid Dombrovsky ◽  
Jean-François Henry ◽  
Clarisse Lorreyte ◽  
Hervé Pron ◽  
Jaona Randrianalisoa

2018 ◽  
Vol 284 ◽  
pp. 1215-1220
Author(s):  
V.G. Merzlikin ◽  
T.V. Zhubreva ◽  
A.V. Kostukov

The influence of optical characteristics of semitransparent thermal barrier coatings (TBC) on thermal regulation of heat-stressed elements of power plants is studied. There was used the developed by the authors methodology of physical and mathematical simulation of thermoradiational (in the range 1-2 μm) and conductive heat transmission in ceramic thermal insulation of chamber combustion inner walls of a diesel engine. The paper discusses temporal temperature regimes in model two-layer TBC-coatings in the form of a selectively scattering and absorbing (in the near infrared range) ceramic heat-insulating layer, deposited on the bonding sublayer (with boundary reflection) of the internal surface of the combustion chamber of Low Heat Rejection diesel. Spectrophotometric measurements of the optical parameters have ensured estimates of optical and thermal fields of the investigated ceramics, the structural composition of which was determined on the basis of ZrO2+8%Y2O3. For typical values of radiant-convective flux up to 1-2 MW/m2 (effecting on heat-stressed elements of heat-insulated combustion chamber of a diesel engine in pulse-periodic regime) optical and structural parameters TBC-coatings that ensure control and superintendence of the ceramic layer surface temperature and its temperature gradient were proposed.


Sign in / Sign up

Export Citation Format

Share Document