scholarly journals School grounds soil contamination with heavy metals and arsenic compounds in the city of Vladimir

2021 ◽  
Vol 244 ◽  
pp. 01011
Author(s):  
Oleg Selivanov ◽  
Anton Martsev

The article presents the content determining results of heavy metals and arsenic in sod-podzolic soils of the school grounds in Vladimir, Vladimir region. According to the accumulation indicator, the accumulation intensity of heavy metals and arsenic in these areas has been determined, which is decreasing in the series of Pb→As→Cu→Zn→Ni. The calculation of the pollutants hazard coefficient showed that their MPC excess decreases in the series of As→Zn→Pb→Cu→Ni. The soil pollution level has been assessed for the school grounds and their ecological situation has been evaluated applying the cumulative indicator of soil pollution with heavy metals and soil pollution index. The values of the soil pollution cumulative indicator of school territories indicate dangerous and moderately dangerous contamination level of the studied soils, and the calculated values of the soil pollution index refer these soils to the category of “contaminated” soils, which poses potential risks for the schoolchildren health.

Author(s):  
E.A. Starostin ◽  
I.A. Kirpichev ◽  
O.A. Makarov

The work presents the results of the study of soil pollution in the area of the solid municipal waste landfill «Nepeino». According to the results of the study carried out for the first time within this territory, for the presence of heavy metals in soils, it was found that the concentrations of pollutants are extremely low and do not exceed MPC, and the calculated index ZC (Total Pollution Index) indicates the presence of non-contaminated soils.


Author(s):  
Eshetu Shifaw

Background. The concentrations of heavy metals in soil and potential risks to the environment and public health are receiving increased attention in China. Objectives. The objective of this paper is to review and analyze heavy metals soil contamination in urban and agricultural areas and on a national scale in China. Methods. Initially, data on soil heavy metals concentration levels were gathered from previous studies and narratively analyzed. A further statistical analysis was performed using the geo-accumulation index (Igeo), Nemerow integrated pollution index (NIPI), mean, standard deviation (SD), skewness and kurtosis. Pollution levels were calculated and tabulated to illustrate overall spatial variations. In addition, pollution sources, remedial measures and impact of soil contamination as well as limitations are addressed. Results. The concentration level of heavy metals was above the natural background level in most areas of China. The problem was more prevalent in urban soils than agricultural soils. At the national level, the soil in most of the southern provinces and Beijing were heavily polluted. Even though the pollution condition based on Igeo was promising, the Nemerow integrated pollution level was the most worrisome. The soils in about 53% of the provinces were moderately to heavily polluted (NIPI>2). The effects were noticed in terms of both public and ecological health risks. The major sources were waste gas, wastewater, and hazardous residuals from factories and agricultural inputs such as pesticides. Efforts have been made to reduce the concentrations and health risks of heavy metals, including policy interventions, controlling contamination sources, reducing the phytoavailability of heavy metals, selecting and rearing of grain cultivars with low risk of contamination, paddy water and fertilizer management, land use changes, phytoremediation and engineering techniques. Conclusions. China is experiencing rapid economic and technological advancements. This increases the risk of heavy metals contamination of soil. If serious attention is not paid to this problem, soil toxicity and biological accumulation will continue to threaten the sustainability of China's development. Competing Interests. The authors declare no competing financial interests


2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Fasmi Ahmad

<p>Bangka Island is rich in natural resources particularly tin minerals. The increasing of tin mining has elevated various wastes such as tailings, oil, and fuel coming from the sand scraper tin boat. These wastes containing toxic heavy metals may harmful to marine organism. Measurement of Pb, Cd, Cu, Zn, and Ni were carried out in September 2010. The purpose of this research was to predict the pollution degree of Pb, Cd, Cu, Zn, and Ni in sediment using two different methods namely geoaccumulation index (I_geo) and pollution load index (PLI). The samples of sediments were collected at 20 stations using Gravity Core. The content of heavy metals in all samples was determined using Atomic Absorption Spectrophotometer with a mixture of air and acetylene flame. The results showed that there was a different of prediction on sediment pollution level between Load Pollution Index with Geoaccumulation Index. According to Load Pollution Index, sediments in this waters were not polluted by Pb, Cd, Cu, Zn, and Ni (PLI&lt;1). Based on Geoaccumulation Index, sediment were also not polluted by Pb, Cu, Zn, and Ni (Igeo&lt;0). While for Cd, sediments divided into three categories, namely not polluted (Igeo&lt;0), light polluted (0&lt;Igeo&lt;1), and medium pollued (1&lt;Igeo&lt;2).  The concentration of the heavy metals still lower than that sediment quality guideline values.</p> <p>Keywords: Bangka Island, heavy metals, geoaccumulation index, pollution load index.</p>


2015 ◽  
Vol 41 (2) ◽  
pp. 54-63 ◽  
Author(s):  
Agnieszka Baran ◽  
Jerzy Wieczorek

Abstract The research aimed to use chemical, geochemical, and ecotoxicity indices to assess the heavy metals content in soils with different degrees of exposure to human pressure. The research was conducted in southern Poland, in the Malopolska (Little Poland) province. All metal contents exceeded geochemical background levels. The highest values of the Igeo index were found for cadmium and were 10.05 (grasslands), 9.31 (forest), and 5.54 (arable lands), indicating extreme soil pollution (class 6) with this metal. Mean integrated pollution index (IPI) values, depending on the kind of use, amounted to 3.4 for arable lands, 4.9 for forests, and 6.6 for grasslands. These values are indicative of a high level of soil pollution in arable lands and an extremely high level of soil pollution in grasslands and forests. Depending on the type of soil use, Vibrio fischeri luminescence inhibition was from -33 to 59% (arable lands), from -48 to 78% (grasslands), and from 0 to 88% (forest). Significantly the highest toxicity was found in soils collected from forest grounds.


Author(s):  
Fiza Sarwar ◽  
Zufishan Anjum ◽  
Noor Fatima ◽  
Muhammad Jahangir Khan ◽  
S. Umair Ullah Jamil ◽  
...  

Charsadda to Peshawar road is characterized with diverse surrounding environment of residential settlements,industrial zones, commercial and agricultural sectors along with heavy traffic route which is contributing to heavy metalpollution. This study is focused on heavy metals: Cadmium (Cd), Chromium (Cr) and Lead (Pb) contribution to theatmospheric pollution level. The heavy metals pollution assessment is carried out by sample collection (soil dust samplesand two vegetation species Cyperus esculentus and Cynodon dactylon) from ten sites along the road which were analyzedby using atomic absorption spectrometry (AAS). Average values of pollution index (PI) as well as average value ofpollution load index (PLI) for Cr, Cd and Pb in case of Cyperus esculentus, Cynodon dactylon and dust were calculated.Geo-accumulation index of roadside dust for Cr, Cd and Pb were estimated along with ecological risk due to roadsidedust using potential ecological risk index (RI). The analyses of this study suggest that the indices for the Cd metal foundto be of more concern than Cr or Pb which correspond to middle or low level of pollution. Statistical analysis revealedthat the three metals had a weak to moderate relationship with one another indicating multiple and somewhat similarsources of pollution.


2013 ◽  
Vol 295-298 ◽  
pp. 1586-1593
Author(s):  
Xiao Qing Zhao ◽  
Hong Hui Yang ◽  
Jian Chen

Based on the farmland soils along the Bijiang River, a main tributary of the international Lantsang-Mekong River flowing through the Jinding Lead-Zinc Deposit, this dissertation makes analyses on the pollution characteristics of spatial variation in farmland soils by adopting the soil sampling and testing analysis and applying single-factor pollution index (SPI) evaluation and Nemerow composite pollution index (NCPI) evaluation. The results indicate that: (1) In accordance with Environmental Quality Standard for Soils (II), the content of Cd contained in the farmland soils has severely exceeded the standard in a large scale, followed by Pb and Zn. However, the content of As is maintained within the specified standard; (2)The SPI values of soils are in the following sequence: Cd>Zn>Pb>As. The pollution level caused by the heavy metal “Cd” to the farmland soils is extremely heavy in a wide range, and a majority of the farmlands are heavily polluted by Zn. The farmlands with moderate pollution by Pb are centered at Plot 2 in the deposit, and only a few farmland soils are moderately polluted by As at Plot 2 in the deposit;(3) Based on the NCPI, the results indicate that the NCPI of the farmland soils has reached to the degree of heavy pollution; (4) It is indicated based on the RPI evaluation that the RPI values of As, Cd, Pb and Zn contained in the farmland soils have exceeded the standard in the following sequence: Pb>Zn>Cd>As, which illustrates that during the development of Jinding Lead-Zinc Deposit in Lanping County, the heavy metals imposing the most profound influence on the soil pollution are Pb and Zn. The heavy metal pollution in the farmland soils from the upper reaches to the lower reaches of the Bijiang River is not only caused by the development of Jinding Lead-Zinc Deposit in Lanping County, but is also associated with its high soil background value;(5) There is a remarkable spatial variation of heavy metal pollution in farmland soils from the upper reaches to the lower reaches of the Bijiang River. Both the SPI and the NCPI values of heavy metals in the soils within the deposit at the upper reaches of the Bijiang River are the lowest; the pollution index of the soils closest to the deposit are the highest, and the pollution index of the soils with a certain distance from the deposit drops swiftly; the pollution index of Plot 4 rises to a certain degree at the middle reaches, and gradually ascends near the Yunlong County seat at Plot 5, however, with a comparatively small growth rates.


2009 ◽  
Vol 42 (7) ◽  
pp. 738-749 ◽  
Author(s):  
Yu. N. Vodyanitskii ◽  
A. A. Vasil’ev ◽  
M. N. Vlasov ◽  
V. V. Korovushkin

Author(s):  
Zhen Wang ◽  
Jianguo Bao ◽  
Tong Wang ◽  
Haseeb Tufail Moryani ◽  
Wei Kang ◽  
...  

Heavy metal poisoning has caused serious and widespread human tragedies via the food chain. To alleviate heavy metal pollution, particular attention should be paid to low accumulating vegetables and crops. In this study, the concentrations of five hazardous heavy metals (HMs), including copper (Cu), chromium (Cr), lead (Pb), cadmium (Cd), and arsenic (As) were determined from soils, vegetables, and crops near four typical mining and smelting zones. Nemerow’s synthetical pollution index (Pn), Potential ecological risk index (RI), and Geo-accumulation index (Igeo) were used to characterize the pollution degrees. The results showed that soils near mining and metal smelting zones were heavily polluted by Cu, Cd, As, and Pb. The total excessive rate followed a decreasing order of Cd (80.00%) > Cu (61.11%) > As (45.56%) > Pb (32.22%) > Cr (0.00%). Moreover, sources identification indicated that Cu, Pb, Cd, and As may originate from anthropogenic activities, while Cr may originate from parent materials. The exceeding rates of Cu, Cr, Pb, Cd, and As were 6.7%, 6.7%, 66.7%, 80.0%, and 26.7% among the vegetable and crop species, respectively. Particularly, vegetables like tomatoes, bell peppers, white radishes, and asparagus, revealed low accumulation characteristics. In addition, the hazard index (HI) for vegetables and crops of four zones was greater than 1, revealing a higher risk to the health of local children near the mine and smelter. However, the solanaceous fruit has a low-risk index (HI), indicating that it is a potentially safe vegetable type.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 878
Author(s):  
Dorota Pikuła ◽  
Wojciech Stępień

Adjusting Polish law to EU standards, many studies were started in the 1990s on the harmfulness of presumably contaminating elements (PCE) to the environment and the quality of plants intended produced for food purposes. For this reason, in 1987, a unique microplate experiment was established on natural soils artificially contaminated with copper, zinc, lead and cadmium oxides (up to the pollution level of class I, II and III). The soils were diversified in terms of pH (through liming), organic matter content (through the addition of brown coal) and the grain size composition of the humus level (Ap) (strong clay sand and light silt clay). After 14 years from the introduction of different rates of metals into the top layer (0–30 cm) of the two soils studied, relatively large movement of heavy metals in the soil profile occurred. The amount of leached metals depended mainly on the rate of a given element. The more contaminated was the soil was, the heavier the metals that leached to lower genetic levels of soil. Contaminated soils always had a higher concentration of individual metals in Et than in Bt level. The content of the tested metals in the Et layer was determined in HCl (1 mol·dm−3) and compared to the humus level. Only at the soil depth below 50 cm (Bt), the content of the studied metals’ forms was much lower than in the surface levels. The calculated mobility coefficients of the tested metals determined in 1 M HCl indicate a larger movement of the tested metals in lighter soils than in medium soils. The highest displacement coefficients were obtained for cadmium, while the lowest were for lead. An increase in mobility was obtained alongside an increase in soil contamination with the heavy metals studied. By analyzing the mobility coefficients (heavy metal increase in the Bt and Et layers), they can be ranked in the following decreasing sequence: on light soils: Cd > Cu > Zn > Pb and on medium soils: Cd > Zn > Pb > Cu.


Author(s):  
P. Oyunbat ◽  
O. Batkhishig ◽  
B. Batsaikhan ◽  
F. Lehmkuhl ◽  
M. Knippertz ◽  
...  

Abstract. The heavy metal pollution of urban soil of industrial area and its impact on human healths becoming one of the environmental problems in Ulaanbaatar city of Mongolia. The purpose of this study was to determine spatial distribution and health risk of heavy metal pollution in soils surrounding area of leather processing factory and wastewater treatment plants (WWTP) of Ulaanbaatar city. Mapping the spatial distribution of contaminants in soils is the basis of pollution evaluation and risk control. Interpolation methods are extensively applied in the mapping processes to estimate the heavy metal (As, Zn, Pb, Cd, Cr, Cu) concentrations of topsoils. The average concentrations of Cr, Ni, Pb, Zn, Cu and As were 1986.9, 110.5, 111.0, 110.5, 53.5, 16.4 mg/kg, respectively. According to result as the soil pollution index with spatial distribution, a high pollution level for Cr while Zn, Cu and Pb have medium pollution levels. The soil pollution index (PI) values of heavy metals of study areas are, following descending orders Cr > Zn > Cu > Pb > As > Ni. The potential ecological risk of Cr, Cu, Pb, As indicated high ecological risk in the study area. The Hazard index values for almost all the metals were higher than 1, it is indicating a carcinogenic risk for children and adults. The risk index values of two metals (Cr, As) were contribute to a higher risk of development of cancer in humans. Heavy metal contamination can occur when soil particles are swept away from the initial pollution areas by the wind. Therefore, it is necessary to take measures to reduce soil pollution and encourage rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document