scholarly journals Generation Revenue Regulation and Incentive Contract Design in Electricity Market

2021 ◽  
Vol 252 ◽  
pp. 01009
Author(s):  
Baike Chen ◽  
Yuxia Rong ◽  
Zhaoxia Jing

In order to curb market power, encourage investment and redistribute welfare, revenue regulation should be carried out in electricity market. The incentive contract represented by the Contract for Difference is a kind of regulation. This paper proposes a Government Authorized Contract based on Revenue Estimation Method (REM) from the perspective of regulating generation revenue. First, the principle and design of the Vesting Contract in Singapore electricity market is employed, analyzing its limitations in regulation. Then, the incentive contract based on REM is presented in four steps. Finally, the IEEE30 node classic system is adopted to demonstrate the proposed model, showing that it can promote generators to bid rationally.

2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6741
Author(s):  
Dzikri Firmansyah Hakam ◽  
Sudarso Kaderi Wiyono ◽  
Nanang Hariyanto

This research optimises the mix and structure of Generation Companies (GenCos) in the Sumatra power system, Indonesia. Market power, indicating the ability to raise prices profitably above the competitive level, tends to be a significant problem in the aftermath of electricity market restructuring. In the process of regulatory reform and the development of competitive electricity markets, it is desirable and practical to establish an efficient number of competitor GenCos. Simulations of a power system account for multi-plant mergers of GenCos subject to a regulatory measure of the Residual Supply Index and the influence of direct current load flow and the topology of the system. This study simulates the Sumatra power system in order to determine the following: optimal market structure, efficient GenCo generation mix, and the optimal number of competitive GenCos. Further, this study seeks to empirically optimise the electricity generation mix and electricity market structure of the Sumatra power system using DC load flow optimisation, market power index, and multi-plant monopoly analysis. The simulations include generation and transmission constraints to represent network constraints. This research is the first to analyse the Sumatra power system using imperfect (Cournot) competition modelling. Furthermore, this study is the first kind to optimise the mix and structure of the Sumatra generation power market. The guidelines and methodology in this research can be implemented in other countries characterised by a monopoly electricity utility company.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1815
Author(s):  
Diego I. Gallardo ◽  
Mário de Castro ◽  
Héctor W. Gómez

A cure rate model under the competing risks setup is proposed. For the number of competing causes related to the occurrence of the event of interest, we posit the one-parameter Bell distribution, which accommodates overdispersed counts. The model is parameterized in the cure rate, which is linked to covariates. Parameter estimation is based on the maximum likelihood method. Estimates are computed via the EM algorithm. In order to compare different models, a selection criterion for non-nested models is implemented. Results from simulation studies indicate that the estimation method and the model selection criterion have a good performance. A dataset on melanoma is analyzed using the proposed model as well as some models from the literature.


2021 ◽  
Author(s):  
Masaki Uto

AbstractPerformance assessment, in which human raters assess examinee performance in a practical task, often involves the use of a scoring rubric consisting of multiple evaluation items to increase the objectivity of evaluation. However, even when using a rubric, assigned scores are known to depend on characteristics of the rubric’s evaluation items and the raters, thus decreasing ability measurement accuracy. To resolve this problem, item response theory (IRT) models that can estimate examinee ability while considering the effects of these characteristics have been proposed. These IRT models assume unidimensionality, meaning that a rubric measures one latent ability. In practice, however, this assumption might not be satisfied because a rubric’s evaluation items are often designed to measure multiple sub-abilities that constitute a targeted ability. To address this issue, this study proposes a multidimensional IRT model for rubric-based performance assessment. Specifically, the proposed model is formulated as a multidimensional extension of a generalized many-facet Rasch model. Moreover, a No-U-Turn variant of the Hamiltonian Markov chain Monte Carlo algorithm is adopted as a parameter estimation method for the proposed model. The proposed model is useful not only for improving the ability measurement accuracy, but also for detailed analysis of rubric quality and rubric construct validity. The study demonstrates the effectiveness of the proposed model through simulation experiments and application to real data.


Author(s):  
Xiongbin Peng ◽  
Yuwu Li ◽  
Wei Yang ◽  
Akhil Garg

Abstract In the battery thermal management system (BMS), the state of charge (SOC) is a very influential factor, which can prevent overcharge and over-discharge of the lithium-ion battery (LIB). This paper proposed a battery modeling and online battery parameter identification method based on the Thevenin equivalent circuit model (ECM) and recursive least squares (RLS) algorithm. The proposed model proved to have high accuracy. The error between the ECM terminal voltage value and the actual value basically fluctuates between ±0.1V. The extended Kalman filter (EKF) algorithm and the unscented Kalman filter (UKF) algorithm were applied to estimate the SOC of the battery based on the proposed model. The SOC experimental results obtained under dynamic stress test (DST), federal urban driving schedule (FUDS), and US06 cycle conditions were analyzed. The maximum deviation of the SOC based on EKF was 1.4112%~2.5988%, and the maximum deviation of the SOC based on UKF was 0.3172%~0.3388%. The SOC estimation method based on UKF and RLS provides a smaller deviation and better adaptability in different working conditions, which makes it more implementable in a real-world automobile application.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


2009 ◽  
Vol 20 (4) ◽  
pp. 295-305 ◽  
Author(s):  
Changxian Liu ◽  
Houping Tian ◽  
Jianping Sun ◽  
Desheng Dash Wu

Sign in / Sign up

Export Citation Format

Share Document