scholarly journals An Alternative Promotion Time Cure Model with Overdispersed Number of Competing Causes: An Application to Melanoma Data

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1815
Author(s):  
Diego I. Gallardo ◽  
Mário de Castro ◽  
Héctor W. Gómez

A cure rate model under the competing risks setup is proposed. For the number of competing causes related to the occurrence of the event of interest, we posit the one-parameter Bell distribution, which accommodates overdispersed counts. The model is parameterized in the cure rate, which is linked to covariates. Parameter estimation is based on the maximum likelihood method. Estimates are computed via the EM algorithm. In order to compare different models, a selection criterion for non-nested models is implemented. Results from simulation studies indicate that the estimation method and the model selection criterion have a good performance. A dataset on melanoma is analyzed using the proposed model as well as some models from the literature.

2020 ◽  
Vol 25 (4) ◽  
pp. 65
Author(s):  
Jismi Mathew ◽  
Christophe Chesneau

It is well established that classical one-parameter distributions lack the flexibility to model the characteristics of a complex random phenomenon. This fact motivates clever generalizations of these distributions by applying various mathematical schemes. In this paper, we contribute in extending the one-parameter length-biased Maxwell distribution through the famous Marshall–Olkin scheme. We thus introduce a new two-parameter lifetime distribution called the Marshall–Olkin length-biased Maxwell distribution. We emphasize the pliancy of the main functions, strong stochastic order results and versatile moments measures, including the mean, variance, skewness and kurtosis, offering more possibilities compared to the parental length-biased Maxwell distribution. The statistical characteristics of the new model are discussed on the basis of the maximum likelihood estimation method. Applications to simulated and practical data sets are presented. In particular, for five referenced data sets, we show that the proposed model outperforms five other comparable models, also well known for their fitting skills.


2019 ◽  
Author(s):  
Meng Wang ◽  
Lihua Jiang ◽  
Michael P. Snyder

AbstractWith the development of high-throughput RNA sequencing (RNA-seq) technology, the Genotype Tissue-Expression (GTEx) project (Consortium et al., 2015) generated a valuable resource of gene expression data from more than 11,000 samples. The large-scale data set is a powerful resource for understanding the human transcriptome. However, the technical variation, sequencing background noise and unknown factors make the statistical analysis challenging. To eliminate the possibility that outliers might affect the estimation of population distribution, we need a more robust estimation method, a method that will adapt to heterogeneous genes and further optimize the estimate for each gene. We followed the approach of the robust estimation based on γ-density-power-weight (Fujisawa and Eguchi, 2008; Windham, 1995), where γ is the exponent of density weight which controls the balance between bias and variance. As far as we know, our work is the first to propose a procedure to tune the parameter γ to balance the bias-variance trade-off under the mixture distributions. We constructed a robust likelihood criterion based on weighted densities in the mixture model of Gaussian population distribution mixed with unknown outlier distribution, and developed a data-adaptive γ-selection procedure embedded into the robust estimation. We provided a heuristic analysis on the selection criterion and found that our practical selection trend under various γ’s in average performance has similar capability to capture minimizer γ as the inestimable Mean Squared Error (MSE) trend from our simulation studies under a series of settings. Our data-adaptive robustifying procedure in the linear regression problem (AdaReg) shows a significant advantage in both simulation studies and real data application of heart samples from the GTEx project compared to the fixed γ procedure and other robust methods. This paper discusses some limitations of this method, and future work.


2019 ◽  
Vol 8 (2) ◽  
pp. 70 ◽  
Author(s):  
Mustafa C. Korkmaz ◽  
Emrah Altun ◽  
Haitham M. Yousof ◽  
G.G. Hamedani

In this study, a new flexible family of distributions is proposed with its statistical properties as well as some useful characterizations. The maximum likelihood method is used to estimate the unknown model parameters by means of two simulation studies. A new regression model is proposed based on a special member of the proposed family called, the log odd power Lindley Weibull distribution. Residual analysis is conducted to evaluate the model assumptions. Four applications to real data sets are given to demonstrate the usefulness of the proposed model.


2014 ◽  
Vol 6 (1) ◽  
pp. 1032-1035 ◽  
Author(s):  
Ramzi Suleiman

The research on quasi-luminal neutrinos has sparked several experimental studies for testing the "speed of light limit" hypothesis. Until today, the overall evidence favors the "null" hypothesis, stating that there is no significant difference between the observed velocities of light and neutrinos. Despite numerous theoretical models proposed to explain the neutrinos behavior, no attempt has been undertaken to predict the experimentally produced results. This paper presents a simple novel extension of Newton's mechanics to the domain of relativistic velocities. For a typical neutrino-velocity experiment, the proposed model is utilized to derive a general expression for . Comparison of the model's prediction with results of six neutrino-velocity experiments, conducted by five collaborations, reveals that the model predicts all the reported results with striking accuracy. Because in the proposed model, the direction of the neutrino flight matters, the model's impressive success in accounting for all the tested data, indicates a complete collapse of the Lorentz symmetry principle in situation involving quasi-luminal particles, moving in two opposite directions. This conclusion is support by previous findings, showing that an identical Sagnac effect to the one documented for radial motion, occurs also in linear motion.


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


Author(s):  
Zihang Wei ◽  
Yunlong Zhang ◽  
Xiaoyu Guo ◽  
Xin Zhang

Through movement capacity is an essential factor used to reflect intersection performance, especially for signalized intersections, where a large proportion of vehicle demand is making through movements. Generally, left-turn spillback is considered a key contributor to affect through movement capacity, and blockage to the left-turn bay is known to decrease left-turn capacity. Previous studies have focused primarily on estimating the through movement capacity under a lagging protected only left-turn (lagging POLT) signal setting, as a left-turn spillback is more likely to happen under such a condition. However, previous studies contained assumptions (e.g., omit spillback), or were dedicated to one specific signal setting. Therefore, in this study, through movement capacity models based on probabilistic modeling of spillback and blockage scenarios are established under four different signal settings (i.e., leading protected only left-turn [leading POLT], lagging left-turn, protected plus permitted left-turn, and permitted plus protected left-turn). Through microscopic simulations, the proposed models are validated, and compared with existing capacity models and the one in the Highway Capacity Manual (HCM). The results of the comparisons demonstrate that the proposed models achieved significant advantages over all the other models and obtained high accuracies in all signal settings. Each proposed model for a given signal setting maintains consistent accuracy across various left-turn bay lengths. The proposed models of this study have the potential to serve as useful tools, for practicing transportation engineers, when determining the appropriate length of a left-turn bay with the consideration of spillback and blockage, and the adequate cycle length with a given bay length.


Forecasting ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 56-90
Author(s):  
Monica Defend ◽  
Aleksey Min ◽  
Lorenzo Portelli ◽  
Franz Ramsauer ◽  
Francesco Sandrini ◽  
...  

This article considers the estimation of Approximate Dynamic Factor Models with homoscedastic, cross-sectionally correlated errors for incomplete panel data. In contrast to existing estimation approaches, the presented estimation method comprises two expectation-maximization algorithms and uses conditional factor moments in closed form. To determine the unknown factor dimension and autoregressive order, we propose a two-step information-based model selection criterion. The performance of our estimation procedure and the model selection criterion is investigated within a Monte Carlo study. Finally, we apply the Approximate Dynamic Factor Model to real-economy vintage data to support investment decisions and risk management. For this purpose, an autoregressive model with the estimated factor span of the mixed-frequency data as exogenous variables maps the behavior of weekly S&P500 log-returns. We detect the main drivers of the index development and define two dynamic trading strategies resulting from prediction intervals for the subsequent returns.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
K. S. Sultan ◽  
A. S. Al-Moisheer

We discuss the two-component mixture of the inverse Weibull and lognormal distributions (MIWLND) as a lifetime model. First, we discuss the properties of the proposed model including the reliability and hazard functions. Next, we discuss the estimation of model parameters by using the maximum likelihood method (MLEs). We also derive expressions for the elements of the Fisher information matrix. Next, we demonstrate the usefulness of the proposed model by fitting it to a real data set. Finally, we draw some concluding remarks.


2021 ◽  
Author(s):  
Masaki Uto

AbstractPerformance assessment, in which human raters assess examinee performance in a practical task, often involves the use of a scoring rubric consisting of multiple evaluation items to increase the objectivity of evaluation. However, even when using a rubric, assigned scores are known to depend on characteristics of the rubric’s evaluation items and the raters, thus decreasing ability measurement accuracy. To resolve this problem, item response theory (IRT) models that can estimate examinee ability while considering the effects of these characteristics have been proposed. These IRT models assume unidimensionality, meaning that a rubric measures one latent ability. In practice, however, this assumption might not be satisfied because a rubric’s evaluation items are often designed to measure multiple sub-abilities that constitute a targeted ability. To address this issue, this study proposes a multidimensional IRT model for rubric-based performance assessment. Specifically, the proposed model is formulated as a multidimensional extension of a generalized many-facet Rasch model. Moreover, a No-U-Turn variant of the Hamiltonian Markov chain Monte Carlo algorithm is adopted as a parameter estimation method for the proposed model. The proposed model is useful not only for improving the ability measurement accuracy, but also for detailed analysis of rubric quality and rubric construct validity. The study demonstrates the effectiveness of the proposed model through simulation experiments and application to real data.


Author(s):  
Xiongbin Peng ◽  
Yuwu Li ◽  
Wei Yang ◽  
Akhil Garg

Abstract In the battery thermal management system (BMS), the state of charge (SOC) is a very influential factor, which can prevent overcharge and over-discharge of the lithium-ion battery (LIB). This paper proposed a battery modeling and online battery parameter identification method based on the Thevenin equivalent circuit model (ECM) and recursive least squares (RLS) algorithm. The proposed model proved to have high accuracy. The error between the ECM terminal voltage value and the actual value basically fluctuates between ±0.1V. The extended Kalman filter (EKF) algorithm and the unscented Kalman filter (UKF) algorithm were applied to estimate the SOC of the battery based on the proposed model. The SOC experimental results obtained under dynamic stress test (DST), federal urban driving schedule (FUDS), and US06 cycle conditions were analyzed. The maximum deviation of the SOC based on EKF was 1.4112%~2.5988%, and the maximum deviation of the SOC based on UKF was 0.3172%~0.3388%. The SOC estimation method based on UKF and RLS provides a smaller deviation and better adaptability in different working conditions, which makes it more implementable in a real-world automobile application.


Sign in / Sign up

Export Citation Format

Share Document