scholarly journals Decision Analysis of E-commerce Closed-loop Supply Chain with Different Recycling Modes

2021 ◽  
Vol 257 ◽  
pp. 02019
Author(s):  
Sijia Liu ◽  
Yanting Huang

According to an e-commerce closed-loop supply chain dominated by manufacturers, which is composed of manufacturers and e-commerce platforms, divided into three different recovery mode: manufacturers recycling mode alone, electric business platform recycling mode alone, and manufacturers and electric business platform mixed mode, using the game theory to solve, compares three closed-loop supply chains found: (1)When the recycling price sensitivity is high, the optimal strategy of the manufacturer is the manufacturers recycling mode alone; when the price sensitivity of recycling is low, the manufacturer’s best strategy is the independent recycling mode of the e-commerce platform. No matter how sensitive the recycling price is, the profits of the manufacturer under the mixed recycling mode are always lower than those under the other two recycling modes. (2) When the recycling price sensitivity is high, the optimal strategy of the electric business platform is the mixed recycling mode; when the price sensitivity of recycling is low, the optimal solution of the electric business platform is the independent recycling mode of the electric business platform. (3) When the recovery price sensitivity is low, the best strategy of both is the separate recycling mode of the electric business platform.

2019 ◽  
Vol 11 (15) ◽  
pp. 4237 ◽  
Author(s):  
Xiaodong Zhu ◽  
Lingfei Yu ◽  
Wei Li

The closed-loop supply chain management model is an effective way to promote sustainable economic development and environmental protection. Increasing the sales volume of remanufactured products to stimulate green growth is a key issue in the development of closed-loop supply chains. By designing an effective warranty strategy, customer’s perceived value can be enhanced and market demand can be stimulated. This study cuts through the warranty period of closed-loop supply chain products. Based on the perspective of consumer behavior, game theory is used to construct the optimal decision-making model for closed-loop supply chains. The optimal warranty decision making for new products and remanufactured products under centralized and decentralized decision-making models is discussed. Further, the impact of the closed-loop supply chain system with warranty services and the design of contract coordination is also shown. We show that consumer preference has a positive impact on the sales of remanufactured products and the profits of enterprises; with the extension of the new product and remanufacturing warranty period, the profit of the supply chain system first increases and then decreases, and the value is maximized at the extreme point in the manufacturer-led decision-making model. Furthermore, the leader gains higher profits with bargaining power, but the profit of the supply chain system under decentralized decision model is less than that of the centralized decision model, reflecting the double marginalization effect. The revenue sharing contract and the two-charge contract designed in this study coordinate the closed-loop supply chain system with warranty services, so that the member companies in the supply chain can achieve Pareto improvement.


2018 ◽  
Vol 118 (2) ◽  
pp. 480-498 ◽  
Author(s):  
Yacan Wang ◽  
Benjamin T. Hazen ◽  
Diane A. Mollenkopf

Purpose The success of closed loop supply chains is contingent upon consumer acceptance of remanufactured products, yet little is known about how consumers value such products. The purpose of this paper is to provide theoretical grounding for understanding consumers’ value perceptions as related to remanufactured products. Design/methodology/approach Diffusion of innovation theory and customer perceived value literature help form the theoretical model, which is tested empirically using survey data of consumers. Structural equation modeling was employed to test the hypotheses. Findings Perceived value of remanufactured products is measured as a function of perceived benefits (environmental benefits; price advantage) and perceived sacrifices (perceived quality; perceived risk), all of which are shown to impact perceived value. Additionally, perceived risk is found to partially mediate the relationship between perceived quality and perceived value. Originality/value This research makes two significant contributions. First, mid-range theory that is contextualized to the closed loop supply chain is developed to aid researchers and practitioners in better understanding the consumer’s role in the closed loop supply chain, as related to the acceptance of remanufactured products. Second, consumer acceptance of remanufactured products represents a form of supply chain demand risk that has previously been unrecognized. The results provide a foundation for incorporating this type of demand risk in to future research efforts.


2011 ◽  
Vol 2 (3) ◽  
pp. 1-15
Author(s):  
A. H. Basiri ◽  
A. Shemshadi ◽  
M. J. Tarokh

Recently, with the environmental crisis, Green supply chain management (or GSCM), and in particular closed loop supply chain model, has received considerable attention by researchers. Closed loop supply chain model aims at reduction of waste and generating profit for enterprises through integrating forward and reverse logistics. Unfortunately, there is limited research on general models for closed loop supply chains in literature. In this paper, extending and enhancing previous models, a general model is proposed for closed loop supply chains using linear programming. The goal of this study is to minimize the leakage of a closed loop supply chain to avoid waste and reduce SCM costs.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Nafiseh Tokhmehchi ◽  
Ahmad Makui ◽  
Soheil Sadi-Nezhad

This paper investigates a closed-loop supply chain network, including plants, demand centers, as well as collection centers, and disposal centers. In forward flow, the products are directly sent to demand centers, after being produced by plants, but in the reverse flow, reused products are returned to collection centers and, after investigating, are partly sent to disposal centers and the other part is resent to plants for remanufacturing. The proposed mathematical model is based on mixed-integer programming and helps minimizing the total cost. Total costs include the expenditure of establishing new centers, producing new products, cargo transport in the network, and disposal. The model aims to answer these two questions. (1) What number and in which places the plants, collection centers, and disposal centers will be constructed. (2) What amount of products will be flowing in each segment of the chain, in order to minimize the total cost. Four types of tuned metaheuristic algorithms were used, which are hybrid forms of genetic and firefly algorithms. Finally an adequate number of instances are generated to analyse the behavior of proposed algorithms. Computational results reveal that iterative sequentialization hybrid provides better solution compared with the other approaches in large size.


2021 ◽  
Vol 13 (12) ◽  
pp. 6663
Author(s):  
Muhammad Salman Shabbir ◽  
Ahmed Faisal Siddiqi ◽  
Lis M. Yapanto ◽  
Evgeny E. Tonkov ◽  
Andrey Leonidovich Poltarykhin ◽  
...  

In today’s competitive environment, organizations, in addition to trying to improve their production conditions, have a special focus on their supply chain components. Cooperation between supply chain members always reduces unforeseen costs and speeds up the response to customer demand. In the new situation, according to the category of return products and their reprocessing, supply chains have found a closed-loop structure. In this research, the aim was to design a closed-loop supply chain in competitive conditions. For this purpose, the key decisions of this chain included locating retail centers, adjusting the inventory of chain members, and selling prices of final products, optimally determined. For this purpose, a nonlinear integer mathematical model is presented. One of the most important innovations of this research was considering the variable value for return products. Then, in order to solve the proposed model, a whale optimization algorithm was developed. Numerical results from the sample examples showed that the whale algorithm had a very good performance in terms of response quality and speed-of-action in finding the optimal solution to this problem.


2021 ◽  
Vol 13 (18) ◽  
pp. 10025
Author(s):  
Xinyi Li ◽  
Guoxuan Huang ◽  
Jie Chu ◽  
Benrong Zheng ◽  
Kai Huang

The cooperative and competitive (i.e., co-opetition) behavior between retailers plays a significant role in the development of operations and marketing strategies in a supply chain. Specifically, retailers’ co-opetition relationship pivotally influences the sustainable performance in a closed-loop supply chain. This study examines the impact of retailer co-opetition on pricing, collection decisions and coordination in a closed-loop supply chain with one manufacturer and two competing retailers. Based on observations in some industries (e.g., electronic manufacturing, fabric and textile, etc.), the cooperative and competitive relationships between retailers can be classified into the following three different modes: Bertrand competition, Stackelberg competition, and Collusion. In this paper, we establish a centralized and three decentralized game-theoretic models under these three co-opetition modes and characterize the corresponding equilibrium outcomes. The results indicate that the Bertrand competition mode yields the highest return rate, which is also superior to the other two modes for both the manufacturer and the supply chain system in terms of profitability. However, it can be shown that which mode benefits the retailers would depend on the degree of competition between the retailers and the relative remanufacturing efficiency. Interestingly, we find that the retailer’s first-move advantage does not necessarily lead to higher profits. In addition, we design a modified two-part tariff contract to coordinate the decentralized closed-loop supply chains under three different retailer co-opetition modes, and the results suggest that the optimal contractual parameters in the contracts highly rely on the remanufacturing efficiency and the competition degree between the two retailers. Several managerial insights for firms, consumers and policy makers are provided through numerical analysis.


Author(s):  
Matineh ziari ◽  
Mohsen Sheikh Sajadieh

Closed-loop supply chains have attracted more attention by researchers and practitioners due to strong government regulations, environmental issues, social responsibilities and natural resource constraints over past few years. This paper presents a mixed-integer linear programming model to design a closed-loop supply chain network and optimizing pricing policies under random disruption. Reusing the returned products is applied as a resilience strategy to cope with the waste of energy and improving supply efficiency. Moreover, it is necessary to find the optimal prices for both final and returned products. Therefore, the model is formulated based on demand function and it maximizes total supply chain’s profit. Finally, its application is explored through using the real data of an industrial company in glass industry.


Author(s):  
Omid - Solgi ◽  
Alireza - Taromi ◽  
jafar ghidar kheljani ◽  
Ehsan - Dehghani

The development of technology, the globalization of the economy, and the unpredictable behavior of customers have led to a dynamic and competitive environment in the Complex Product Systems (CoPS) market. Besides, CoPS economic pricing is one of the key factors that significantly reduces production costs of Complex products and systems  ​​and increases competitiveness . In this regard, this paper develops a hybrid data envelopment analysis (DEA) fuzzy mathematical model for economic pricing of CoPS in a competitive closed-loop supply chain network under uncertainty, which leads to productivity and reducing the costs. To achieve the aim of this study, at first, different CoPS providers were evaluated using DEA based on a set of economic, technical, and geographical criteria . The advantage of this evaluation was choosing the right providers, eliminating inappropriate providers, and reducing complexity as one of the fundamental problems in mathematical models. Next, we maximize the benefit of the supply chain using the mathematical model. The objective of the proposed model is to identify strategic and tactical decisions at the same time to provide a fully optimal solution to the model. Furthermore, the presented robust model is capable of providing a stable structure under different uncertainties. This leads to minimizing the purchasing cost of CoPS manufacturers. Eventually, to evaluate the effectiveness and usefulness of the proposed approach, a case study was used to derive important managerial results .


Author(s):  
A. H. Basiri ◽  
A. Shemshadi ◽  
M. J. Tarokh

Recently, with the environmental crisis, Green supply chain management (or GSCM), and in particular closed loop supply chain model, has received considerable attention by researchers. Closed loop supply chain model aims at reduction of waste and generating profit for enterprises through integrating forward and reverse logistics. Unfortunately, there is limited research on general models for closed loop supply chains in literature. In this paper, extending and enhancing previous models, a general model is proposed for closed loop supply chains using linear programming. The goal of this study is to minimize the leakage of a closed loop supply chain to avoid waste and reduce SCM costs.


Author(s):  
Sibel Yıldız Çankaya ◽  
Bülent Sezen

Closed-loop supply chain management has begun to gain more importance in recent years due to increased environmental concerns, reduced natural resources, and legal regulations. In addition, with the shortening of product life cycles, the rate of returning products is increasing day by day. Therefore, businesses are trying to find ways to get more value from these returning products. Here, the closed-loop supply chain (CLSC), which comes into effect at this point, refers to the design, operation, and control of the system to ensure maximum value from returning products of different breeds and quantities. Recycling these returned products by different methods will provide significant savings in terms of both the production costs by providing return of the economically valuable materials to the economy as an input and the waste disposal costs by reducing the amount of waste. This chapter investigates the concept of closed-loop supply chain and its benefits to the businesses.


Sign in / Sign up

Export Citation Format

Share Document