scholarly journals Multi-objective optimal allocation of water resources in Yangchangwan mining area based on ecological priority

2021 ◽  
Vol 260 ◽  
pp. 01004
Author(s):  
Zhen Zhang ◽  
Panyue Zhang ◽  
Guangming Zhang

With the development of mining area economy and the adjustment of industrial structure from traditional heavy industry to hightech industry, the supply and demand structure of water resources has changed significantly, and the ecological damage in mining area make the ecological water consumption increase significantly. This paper summarizes the water supply of surface water, groundwater, mine drainage and reclaimed water, as well as all kinds of water demand. Based on the principle of ecological priority, a multi-objective optimal allocation model for the coordinated development of ecological environment, social economy and water resources in Yangchangwan mining area was constructed. The results show that the multi-objective optimal allocation model well coordinated the social and economic development goals and resource saving goals, and the optimization scheme ensured that the water demand satisfaction of each water sector reached 100%. On the one hand, it can provide technical support for the mining area to realize the green water and green mountains pattern as soon as possible, on the other hand, it can also provide reference for water resources management in other similar areas.

2018 ◽  
Vol 38 ◽  
pp. 03055
Author(s):  
Xi rui-chao ◽  
Gu yu-jie

Starting from the basic concept of optimal allocation of water resources, taking the allocation of water resources in Tianjin as an example, the present situation of water resources in Tianjin is analyzed, and the multi-objective optimal allocation model of water resources is used to optimize the allocation of water resources. We use LINGO to solve the model, get the optimal allocation plan that meets the economic and social benefits, and put forward relevant policies and regulations, so as to provide theoretical which is basis for alleviating and solving the problem of water shortage.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1289 ◽  
Author(s):  
Huaxiang He ◽  
Aiqi Chen ◽  
Mingwan Yin ◽  
Zhenzhen Ma ◽  
Jinjun You ◽  
...  

The rational allocation of water resources in the basin/region can be better assisted and performed using a suitable water resources allocation model. Rule-based and optimization-based simulation methods are utilized to solve medium- and long-term water resources allocation problems. Since rule-based allocation methods requires more experience from expert practice than optimization-based allocation methods, it may not be utilized by users that lack experience. Although the optimal solution can be obtained via the optimization-based allocation method, the highly skilled expert experience is not taken into account. To overcome this deficiency and employ the advantages of both rule-based and optimization-based simulation methods, this paper proposes the optimal allocation model of water resources where the highly skilled expert experience has been considered therein. The “prospect theory” is employed to analyze highly skilled expert behavior when decision-making events occur. The cumulative prospect theory value is employed to express the highly skilled expert experience. Then, the various elements of the cumulative prospect theory value can be taken as the variables or parameters in the allocation model. Moreover, the optimal water allocation model developed by the general algebraic modeling system (GAMS) has been improved by adding the decision reversal control point and defining the inverse objective function and other constraints. The case study was carried out in the Wuyur River Basin, northeast of China, and shows that the expert experience considered as the decision maker’s preference can be expressed in the improved optimal allocation model. Accordingly, the improved allocation model will contribute to improving the rationality of decision-making results and helping decision-makers better address the problem of water shortage.


2012 ◽  
Vol 518-523 ◽  
pp. 4165-4170
Author(s):  
Xiao Yu Song ◽  
Huai You Li ◽  
Wen Juan Shi

In this paper, based on the fact of water resources shortage, environmental degradation in Chanba River basin, using multi-objective optimization theory, we established the ecology-oriented water resources optimal allocation model and achieved the coupling between water quantity and quality. According to supply and demand of water resources in two levels of years (2020, 2030) and the guaranteed rate 75%, developed model parameters (coefficients), called the optimization function to solve it. The model is applied to Chanba River basin, indicating that the model is reasonable, efficient algorithms The optimal allocation model and the results reflect the concept of sustainable development for ecological, economic efficiency and help to improve water supply reliability, the sustainable use of water resources planning and management provides a basis for decision making.


Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


2018 ◽  
Vol 246 ◽  
pp. 02054
Author(s):  
Hengyue Yang ◽  
Shaohui Zhang ◽  
Wei Dai ◽  
Yinong Li ◽  
Xin Zeng

the water cycle in irrigation districts is extremely complicated under the dual influence of strong human activities and the nature. To establish the multi-water source rational allocation model of irrigation district, this paper first establish a multi-objective function based on economic utility, ecological utility and irrigation performance and improve Hicks optimization method. Then, combine it with chaotic particle swarm optimization algorithm to carry out research on temporal and spatial distribution evolution and optimal allocation of water resources in irrigation districts and collaborative scheduling and regulation of surface-groundwater. The multi-objective rational allocation is an important basis for the efficient use of water resources in irrigation districts and ecological harmony. This paper takes the typical irrigation area of Dongxiezong in Heilongjiang Province as the object for the study of the optimal allocation method of water resources in the irrigation district.


2020 ◽  
Vol 12 (4) ◽  
pp. 1337 ◽  
Author(s):  
Junfei Chen ◽  
Cong Yu ◽  
Miao Cai ◽  
Huimin Wang ◽  
Pei Zhou

With the rapid increase of water demand in urban life, ecology and production sectors, the problem of water resources allocation has become increasingly prominent. It has hindered the sustainable development of urban areas. Based on the supply of various water sources and the water demand of different water users, a multi-objective optimal allocation model for urban water resources was proposed. The model was solved using the algorithm of particle swarm optimization (PSO). The algorithm has a fast convergence and is both simple and efficient. In this paper, the conflict over Kunming’s water resources allocation was taken as an example. The PSO algorithm was used to obtain optimized water resources allocation plans in the year 2020 and 2030, under the circumstances of a dry year (inflow guarantee rate p = 0.825) and an unusually dry year (inflow guarantee rate p = 0.885), respectively. The results showed that those allocation plans can lower the future potential water shortage rates of Kunming. At the same time, the interests of different sectors can all be satisfied. Therefore, conflicts over urban water use can be effectively alleviated.


Sign in / Sign up

Export Citation Format

Share Document