scholarly journals Metallogenic characteristics and genesis of granite type uranium ore bodies in South China

2021 ◽  
Vol 261 ◽  
pp. 02068
Author(s):  
Zekun Liu

South China is the key producing area of granite-type uranium deposits in China. After decades of exploration, many important progress has been made in the study of metallogenic regularity of granite type uranium deposits in this area. On the basis of previous studies, this paper attempts to sort out the geological conditions and characteristics of diagenesis and mineralization of granite type uranium deposits in South China, and discuss their metallogenic models, so as to better summarize the metallogenic regularity and serve the prospecting and prediction.

The principal mineral deposits of Proterozoic age in Australia, not only of uranium but also of base and precious metals, are found within a north-trending belt central to the continent which stretches from Adelaide to Darwin. This belt represents the margin to the West Australian Archaean craton, and comprises orogenic and shelf domains that evolved throughout the Proterozoic; and it is suggested that the formation of the uranium deposits was an integral part of the evolution of the various geosynclines in the belt. The uranium ore bodies occupy structurally prepared features such as shears, faults and breccias, and are clearly introduced, but the source of the mineralizing fluids, and the precise mechanism of deposition, is, in some cases at least, in dispute. Mineralization per ascensum by connate water carrying metals desorbed from the sedimentary pile, or in association with acid magma which may itself be the product of anatexis, is favoured by the author.


2009 ◽  
Vol 1 (3) ◽  
pp. 291-305
Author(s):  
Shen Weizhou ◽  
Zhang Zuhuan ◽  
Zheng Bangtong

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 116
Author(s):  
Yue Sun ◽  
Barry P. Kohn ◽  
Samuel C. Boone ◽  
Dongsheng Wang ◽  
Kaixing Wang

The Zhuguangshan complex hosts the main uranium production area in South China. We report (U-Th)/He and fission track thermochronological data from Triassic–Jurassic mineralized and non-mineralized granites and overlying Cambrian and Cretaceous sandstone units from the Lujing uranium ore field (LUOF) to constrain the upper crustal tectono-thermal evolution of the central Zhuguangshan complex. Two Cambrian sandstones yield reproducible zircon (U-Th)/He (ZHe) ages of 133–106 Ma and low effective uranium (eU) content (270–776 ppm). One Upper Cretaceous sandstone and seven Mesozoic granites are characterized by significant variability in ZHe ages (154–83 Ma and 167–36 Ma, respectively), which show a negative relationship with eU content (244–1098 ppm and 402–4615 ppm), suggesting that the observed age dispersion can be attributed to the effect of radiation damage accumulation on 4He diffusion. Correspondence between ZHe ages from sandstones and granites indicates that surrounding sedimentary rocks and igneous intrusions supplied sediment to the Cretaceous–Paleogene Fengzhou Basin lying adjacent to the LUOF. The concordance of apatite fission track (AFT) central ages (61–54 Ma) and unimodal distributions of confined track lengths of five samples from different rock units suggest that both sandstone and granite samples experienced a similar cooling history throughout the entire apatite partial annealing zone (~110–60 °C). Apatite (U-Th-Sm)/He (AHe) ages from six non-mineralized samples range from 67 to 19 Ma, with no apparent correlation to eU content (2–78 ppm). Thermal history modeling of data suggests that the LUOF experienced relatively rapid Early Cretaceous cooling. In most samples, this was followed by the latest Early Cretaceous–Late Cretaceous reheating and subsequent latest Late Cretaceous–Recent cooling to surface temperatures. This history is considered as a response to the transmission of far-field stresses, involving alternating periods of regional compression and extension, related to paleo-Pacific plate subduction and subsequent rollback followed by Late Paleogene–Recent India–Asia collision and associated uplift and eastward extrusion of the Tibetan Plateau. Thermal history models are consistent with the Fengzhou Basin having been significantly more extensive in the Late Cretaceous–Early Paleogene, covering much of the LUOF. Uranium ore bodies which may have formed prior to the Late Cretaceous may have been eroded by as much as ~1.2 to 4.8 km during the latest Late Cretaceous–Recent denudation.


2018 ◽  
Vol 69 (1) ◽  
pp. 22-42 ◽  
Author(s):  
Chuang Zhang ◽  
Yuqi Cai ◽  
Qian Dong ◽  
Hao Xu

Author(s):  
Paul Alexandre

Abstract A large data set comprising near-total digestion analyses of whole rock samples from the Athabasca Basin, Saskatchewan, Canada (based principally on the Geological Survey of Canada open file 7495), containing more than 20,000 analyses, was used to define the average chemical composition of Athabasca Group sandstones and of unconformity-related uranium deposits hosted by the basin. The chemical composition of unaltered and un-mineralized Athabasca Group sandstones is dominated by Al (median Al2O3 of 1.14 wt.%), Fe (median Fe2O3 of 0.24 wt.%), and K (median K2O of 0.11 wt.%; Si was not measured), corresponding mostly to the presence of kaolin, illite, and hematite, in addition to the most-abundant quartz. The median concentration of U in the barren sandstones is 1 ppm, with 5 ppm Th, 3 ppm Pb, and 56 ppm ΣREE. Other trace elements present in significant amounts are Zr (median of 100 ppm), Sr (median of 69 ppm), and B (median of 43 ppm), corresponding to the presence of zircon, illite, and dravite. The elements most enriched in a typical Athabasca Basin unconformity-related uranium deposit relative to the barren sandstone are U (median enrichment of ×710), Bi (×175), V (×77), and Mg (×45), followed by five elements with enrichment factors between 20 and 30 (Co, Mo, K, As, and Ni). These correspond to the presence in the ore bodies of alteration minerals (dravite, kaolinite, illite, chlorite, aluminum-phosphate-sulfate minerals, and a suite of sulfide minerals) and are similar to what has been observed before. These elements are similar to the typical pathfinder elements described above known deposits, but their usefulness has to be assessed based on their relative mobility in the predominantly oxidizing Athabasca Basin sandstones.


2021 ◽  
Vol 13 (1) ◽  
pp. 479-499
Author(s):  
Nancy Knowlton

While the ocean has suffered many losses, there is increasing evidence that important progress is being made in marine conservation. Examples include striking recoveries of once-threatened species, increasing rates of protection of marine habitats, more sustainably managed fisheries and aquaculture, reductions in some forms of pollution, accelerating restoration of degraded habitats, and use of the ocean and its habitats to sequester carbon and provide clean energy. Many of these achievements have multiple benefits, including improved human well-being. Moreover, better understanding of how to implement conservation strategies effectively, new technologies and databases, increased integration of the natural and social sciences, and use of indigenous knowledge promise continued progress. Enormous challenges remain, and there is no single solution; successful efforts typically are neither quick nor cheap and require trust and collaboration. Nevertheless, a greater focus on solutions and successes will help them to become the norm rather than the exception.


Sign in / Sign up

Export Citation Format

Share Document