scholarly journals Treatment of simulated printing and dyeing wastewater using ozone microbubble

2021 ◽  
Vol 261 ◽  
pp. 04005
Author(s):  
Emmanuel Nkudede ◽  
Husseini Sulemana ◽  
Bo Zhang ◽  
Kaida Zhu ◽  
Shan Hu ◽  
...  

Owing to its widespread and persistent usage, methylene blue (MB) is an environmental substance, mostly found in the printing and dyeing industry that raises concerns in the environment recently by posing significant threat to human life and the ecosystem as a whole. Thus, there is the need to effectively manage and treat the wastewater from these industries before reaching to the available water sources. Ozonation treatment is very efficient in treating printing and dyeing wastewater (MB) and can be greatly improved by using micro-bubble technology. Microbubble dissolution is an effective way to improve the rate of ozone mass transfer. To discover these properties, a method was used to improve the mass transfer of ozone microbubbles, which was used to effectively treat simulated printing and dyeing wastewater. We investigated the effects of pH, water temperature, ozone flow, and other conditions on the dissolution and attenuation properties of ozone in methylene blue microbubble solutions. Treatment of simulated printing and dyeing wastewater (methylene blue) was investigated under various initial pH and ozone flow rates. A catalytic exhibition was performed towards the decolorization of methylene blue (MB) concentrations and the corresponding COD removal efficiency. Ozone depletion and pH levels played key roles in MB degradation. Under high pH level of 11.01, the rate of removal of COD was 93.5%. Ozone dosage also has direct effect on COD removal efficiency and decolorization. Higher ozone flow rates, 0.4 L/min and 0.5 L/min recorded more than 94% degradation of COD thus very effective and efficient. Also, ozone flow rates 0.3 L/min, 0.4 L/min and 0.5 L/min with initial pH, 7.03, 6.63 and 6.36 decreased to 3.43, 3.49 and 3.44 after reaction processes which clearly shows that with high ozone dosage, pH reduces considerably.

2014 ◽  
Vol 1010-1012 ◽  
pp. 805-808
Author(s):  
Xiu Wen Wu ◽  
Ping Ma ◽  
Hui Xia Lan ◽  
Heng Zhang ◽  
Shan Hong Lan

The influence of H2O2、addition of Fe2+、pH、reaction time and temperature to advanced treatment effect of printing and dyeing wastewater with Fenton oxidation was studied. The results showed that when the addition of H2O2(the concentration was 30%) was 3mL/L,the addition of FeSO4·7H2O was 1.6g/L,pH was 4,the temperature was about 30°C,reacting time was 35min,the COD removal efficiency achieved above 55%,COD of effluent was below 45mg/L.


2014 ◽  
Vol 1010-1012 ◽  
pp. 761-764
Author(s):  
Shan Hong Lan ◽  
Ping Ma ◽  
Shi Wen Geng ◽  
Jia Hao Sun ◽  
Hui Xia Lan ◽  
...  

Study on the pretreatment of printing and dyeing wastewater with PAC、Fe2(SO4)3and FeCl3was carried out. Effects of the flocculants dosage, pH on the treatment efficiency were studied. The results showed that with PAC, Fe2(SO4)3and the FeCl3dosage rising, the treatment effect first decreased and then increased and when the addition amount was 300 mg.L-1、300mg.L-1and 250 mg.L-1,the COD removal efficiency achieved 69%、78%、74% , respectively. With the rising of pH, the treatment effects of the three types of flocculants increased first and then decreased, the optimum pH of PAC and Fe2(SO4)3was 7and the best pH of FeCl3was 6. At last, the settle ability and the amount of the producing floc were studied, the results showed that the settle ability was the best and the least amount of sludge produced by FeCl3flocculation. Keywords: printing and dyeing wastewater, pretreatment, flocculants, screening.


2016 ◽  
Vol 74 (3) ◽  
pp. 564-579 ◽  
Author(s):  
Ceyhun Akarsu ◽  
Yasin Ozay ◽  
Nadir Dizge ◽  
H. Elif Gulsen ◽  
Hasan Ates ◽  
...  

Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box–Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5–15 V), initial pH (4.5–8.0) and time (30–90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P > 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R2 and Radj2 values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R2 values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage–time and pH–time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic effect.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Iqbal Syaichurrozi ◽  
Sarto Sarto ◽  
Wahyudi Budi Sediawan ◽  
Muslikhin Hidayat

The distillery spent wash (DSW) from bioethanol industries has a very high chemical oxygen demand (COD). Hence, the goal of this study is to investigate the effect of currents (2.5, 3 and 3.5 A) and initial pHs (4.4, 5.0 and 7.0) on electrocoagulation (EC) to decrease the COD in DSW. The results showed that the EC at the current of 3.5 A enabled a higher COD removal efficiency (74.9%) than those at the currents of 2.5 (35.4%) and 3 A (60.9%). Furthermore, the initial pH of 7.0 resulted in a higher COD removal efficiency than the initial pHs of 4.4 and 5.0. The solution pH and temperature increased throughout the process. The working volume was not constant due to the reactions of water reduction, evaporation and flotation. Scum and sludge productions were also monitored during the process. Then, the measured data (COD, sludge and scum) were used in the modeling. The simple mechanistic models were successfully built and applied to simulate the data in mass units with two different routes of process. Route 1 assumed that the COD was converted to sludge and then the latter was converted to scum. Route 2 assumed that the COD was converted to the sludge and scum at the same time. When the EC was operated at the initial pH of 4.4, the COD removal process followed route 1, but that at the initial pHs of 5.0 and 7.0, the COD removal process followed route 2. The higher the current applied in the EC, the higher the kinetic constants of ka and kb. Additionally, the higher the initial pH set, the higher the kinetic constants were. This showed that the formation rates of sludge and scum at the higher currents or initial pHs were faster than those at the lower values.


2015 ◽  
Vol 71 (12) ◽  
pp. 1884-1892 ◽  
Author(s):  
Chao Feng ◽  
Henghu Sun ◽  
Suqin Li ◽  
Mary Kay Camarillo ◽  
William T. Stringfellow ◽  
...  

An oil–water emulsion from the machinery industry was treated using Fenton's reagent. The objective was to reduce the high chemical oxygen demand (COD) of this waste stream so that it would meet the COD effluent limit of Chinese Standard JS-7740-95. The optimal [H2O2]/[Fe2+] ratio for COD removal was 3. An orthogonal experimental design was developed based on the optimal [H2O2]/[Fe2+] ratio to evaluate the significance of four parameters relevant to the treatment process, namely, H2O2 dosage, initial pH, oxidation time and coagulation pH. The influence of the four parameters on COD removal efficiency decreased as follows: H2O2 dosage > oxidation time > coagulation pH > initial pH. The COD removal efficiency was further investigated based on the most important single-factor parameter, which was H2O2 dosage, as discovered in the orthogonal test. A well-fitted empirical correlation was obtained from the single-factor analysis and up to 98% COD removal was attained using 50 mM H2O2. Using the doses and conditions identified in this study, the treated oil–water emulsion can be discharged according to Chinese Standard JS-7740-95.


2011 ◽  
Vol 183-185 ◽  
pp. 1456-1461 ◽  
Author(s):  
Shi Feng Ji ◽  
Chun Mei Gao ◽  
Hong Yang ◽  
Ming Chu ◽  
Chun Feng Wang

Bio-ferric membrane bioreactor(MBR) was made through adding ferric hydroxide to traditional MBR and forming bio-ferric sludge. Through analyzing treatment efficiency of dyeing and printing wastewater in bio-ferric MBR and traditional MBR respectively, the results showed: COD removal efficiency in bio-ferric MBR was more better than that in traditional MBR which increased 10% or so, but the influence of HRT on COD removal efficiency wasn’t evident; Via changing SRT, it was obtained: bio-ferric MBR could operate in longer SRT while treatment effect couldn’t be impacted that could discharge less sludge than traditional MBR which coule get sludge minimization; bio-ferric sludge flocs could provide better survival environment for nitrobacteria that made NH3-N removal efficiency stable. The experiment illuminated: the biochemical and physical function of bio-ferric sludge could strengthen the holistic stability of the system.


2011 ◽  
Vol 343-344 ◽  
pp. 193-198
Author(s):  
Wen Yan Shi ◽  
Jian Zhong Gu ◽  
Wen Jing Wu ◽  
Yan Feng Sun ◽  
Rui Yun Guo ◽  
...  

The batch removal of dye from textile dyeing wastewater by using nanooxides decorated multiwalled carbon nanotubes was studied under electron beam conditions. The effect of different nanooxides decorated multiwalled carbon nanotubes content and irradiation dosage was also investigated. The color removal efficiency was 94.9% in dose of 17.5kGy. The colour removal efficiency with Fe2O3 decorated multiwalled carbon nanotubes was similar to with TiO2 decorated multiwalled carbon nanotubues. The COD removal efficiency was 52.5% in the dose of 14.0kGy. When the irradiation dose of 17.5kGy, the COD removal efficiency was 98.2% with TiO2 decorated multiwalled carbon nanotubes.Overall, the study demonstrated that nanooxides decorated multiwalled carbon nanotubes can effectively remove color and COD from aqueous solution under irradiation.


2013 ◽  
Vol 295-298 ◽  
pp. 1850-1854
Author(s):  
Li Cui ◽  
Rui Gao ◽  
Fang Qin Cheng ◽  
Jian Feng Li ◽  
Xu Ming Wang

Four industrial wastes: iron scraps, ceramsite, fly ash and steel slag were studied as reactive media for COD removal from the Fenhe River. Leaching tests demonstrated that iron scraps and ceramsite were relatively stable compared to steel slag and fly ash. Ca2+ was the main leaching ion. Batch experiment results showed that iron scraps and steel slag had better COD removal efficiency than ceramsite and fly ash. It was also found that the initial pH was important for COD removal and the COD removal efficiency of iron scraps was linearly correlated with the initial pH (R2=0.982). Compared to batch experiments, COD removal was much higher in column tests, which were about 70%, 54%, 46% for iron scraps, steel slag and ceramsite respectively.


2019 ◽  
Vol 6 (12) ◽  
pp. 191304 ◽  
Author(s):  
Yan Wang ◽  
Hui-qiang Li ◽  
Li-ming Ren

The electro-Fenton (EF) process was applied to treat mother liquor of gas field wastewater (ML-GFW). The Fe-Fe electrodes were used and H 2 O 2 was added to the EF system. Effect of initial pH on chemical oxygen demand (COD) removal efficiency, specific electrical energy consumption (SEEC), specific electrode plate consumption (SEPC) and organic matter removal mechanism was investigated. The results showed that COD removal efficiency reached the maximum (71.9%) at initial pH of 3 after reaction for 3 h. Besides, considering with the SEEC and SEPC, pH of 3 was also the best choice, at which SEEC was 4.7 kW h kg COD −1 , SEPC was 0.82 kgFe kg COD −1 . Organic matter removal was achieved by two ways: oxidation and flocculation, and oxidation played a major role. With the analysis of GC-MS, the possible degradation pathways of the representative contaminants in the ML-GFW were given.


Sign in / Sign up

Export Citation Format

Share Document