scholarly journals Study on the impact of coastal land use change on environment based on remote sensing data

2021 ◽  
Vol 267 ◽  
pp. 01061
Author(s):  
Liu Yong ◽  
Yunlin Chen

The coastal zone is the bridge between the ocean and the mainland, the junction of the two ecosystems, the focus of the economic development of coastal cities and the gathering place of ports. Remote sensing technology uses the detector to receive the electromagnetic wave from the target object. After processing the information, it can distinguish the attributes of the target object. It is widely used in marine development, aerospace understanding, resource exploration and other fields.In this paper, the coastal zone of Shangyu Economic Development Zone on the south coast of Hangzhou Bay is taken as the research area. Using multi-source remote sensing data, information extraction, change monitoring and analysis are carried out from the perspective of marine and land ecosystems, and the impact of coastal development on the coastal zone is discussed. The main conclusions are as follows: (a) Using visual interpretation method, it is found that the coastline of the study area changes obviously, and the decrease trend is below the total coastline length; Fractal dimension index is used to characterize the natural condition of coastline. The total coastline length, natural coastline and artificial coastline all increase, which means that the amount of beach sediment deposition and the degree of artificial intervention have increased in this stage. (b) The object-oriented method is used to extract the land use classification of the coastal zone in the study area. Cultivated land is the main land type in the study area, and the impervious surface is the fastest growing. The degree of artificial development of the whole study area is gradually increasing, and the coastal beach area is greatly reduced, and the impervious surface area is greatly increased. Wetland and impervious surface are the two most dramatic changes in the study period. Wetland is mainly transformed into other surface features, while impervious surface is mainly transformed into other surface features.

Formulation of the problem. The Tatarbunars’kyi District is located in the southwestern part of Odessa region and reflects the main features of the landscape-economic structure of the region: water, agricultural, resort and environmental areas. On the other hand, the form of land use is characterized by widespread plowing of land with degradation and erosion of soil cover. Land structure and use patterns have a complex negative impact on ecological and economic processes and cannot ensure the sustainable development of the region, in particular it is antagonistic to the unique transitional wetland ecosystems of international importance located within the area. To solve the issues of balanced environmental management and zoning of the landscape and economic structure of the region, Earth remote sensing (ERS) data can be used - spectrozonal satellite imagery and geographic information systems (GIS), which can simultaneously cover the research area as a whole, carry out regular monitoring and significantly reduce costs by expensive expeditionary work. Using space monitoring data allows you to get a large array of characteristics of the state of the territorial complexes of the region. Purpose of the work is: assessment of the ecological state of the landscape economic structure and development of recommendations for the protection of natural and territorial complexes of the Tatarbunar’skyi District of Odessa region based on the use of GIS and remote sensing data. Methods. Landsat8 satellite images with OLI and TIRS sensors, digital terrain models (SRTM) with a spatial resolution of 30 m were used as initial data. The spatial distribution of the population was carried out on the basis of OpenStreetMap data using automatic interpolation using the IDW method. Spatial analysis and data processing were carried out in the QGIS v3.4.6 software package. To quantify the vegetation cover, the Normalized Difference Vegetation Index - NDVI was calculated. Waterlog distribution was estimated using a modified normalized differential moisture index (NDMI). The analysis of the structure of land use and anthropogenic load was carried out on the basis of ranking of territorial objects into homogeneous groups to calculate geoecological coefficients. Results. The article discusses the possibilities of using Earth remote sensing data for a functional assessment of land changes as a result of anthropogenic activities, primarily arable land, analyzes the ecological and economic equilibrium of the region based on geoecological coefficients, identifies areas that are primarily exposed to environmental risks, exogenous processes and the impact anthropogenic factors. Measures are proposed to increase the environmental sustainability of agrolandscapes and the landscape-anthropogenic structure of the region’s lands. A detailed hydrological and morphometric analysis of the catchment basin was carried out. Karachaus within the boundaries of the District. For the catchment estuary, remediation and nature conservation measures based on GIS are proposed and designed.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2015 ◽  
Vol 19 (1) ◽  
pp. 507-532 ◽  
Author(s):  
P. Karimi ◽  
W. G. M. Bastiaanssen

Abstract. The scarcity of water encourages scientists to develop new analytical tools to enhance water resource management. Water accounting and distributed hydrological models are examples of such tools. Water accounting needs accurate input data for adequate descriptions of water distribution and water depletion in river basins. Ground-based observatories are decreasing, and not generally accessible. Remote sensing data is a suitable alternative to measure the required input variables. This paper reviews the reliability of remote sensing algorithms to accurately determine the spatial distribution of actual evapotranspiration, rainfall and land use. For our validation we used only those papers that covered study periods of seasonal to annual cycles because the accumulated water balance is the primary concern. Review papers covering shorter periods only (days, weeks) were not included in our review. Our review shows that by using remote sensing, the absolute values of evapotranspiration can be estimated with an overall accuracy of 95% (SD 5%) and rainfall with an overall absolute accuracy of 82% (SD 15%). Land use can be identified with an overall accuracy of 85% (SD 7%). Hence, more scientific work is needed to improve the spatial mapping of rainfall and land use using multiple space-borne sensors. While not always perfect at all spatial and temporal scales, seasonally accumulated actual evapotranspiration maps can be used with confidence in water accounting and hydrological modeling.


Author(s):  
Hua Ding ◽  
Ru Ren Li ◽  
Li Shuang Sun ◽  
Xin Wang ◽  
Yu Mei Liu

2021 ◽  
Vol 3 ◽  
pp. 180-185
Author(s):  
Y. M. Kenzhegaliyev ◽  
◽  
◽  

The goal -is to explore ways of using Earth remote sensing data for efficient land use. Methods - detailed information on current location of certain types of agricultural crops in the study areas has been summarized, which opens up opportunities for the effective use of cultivated areas. It was revealed that the basis of the principle of the method under consideration is the relationship between the state and structure of vegetation types with its reflective ability. It has been determined that information on the spectral reflective property of the vegetation cover in the future can help replace more laborious methods of laboratory analysis. For classification of farmland, satellite images of medium spatial resolution with a combination of channels in natural colors were selected. Results - a method for identifying agricultural plants by classification according to the maximum likelihood algorithm was considered. The commonly used complexes of geoinformation software products with modules for special image processing allow displaying indicators in the form of raster images. It is shown that the use of Earth remote sensing data is the most relevant solution in the field of crop recognition and makes it possible to simplify the implementation of such types of work as the analysis of the intensity of land use, the assessment of the degree of pollution with weeds and determination of crop productivity. Conclusions - the research results given in the article indicate that timely information on the current location of certain types of agricultural crops in the studied territories significantly simplifies the implementation of the tasks and increases the resource potential of agricultural lands. In turn, the timing of the survey and the state of environment affect the spectral reflectivity of vegetation.


Author(s):  
K Choudhary ◽  
M S Boori ◽  
A Kupriyanov

The main objective of this study was to detect groundwater availability for agriculture in the Orenburg, Russia. Remote sensing data (RS) and geographic information system (GIS) were used to locate potential zones for groundwater in Orenburg. Diverse maps such as a base map, geomorphological, geological structural, lithology, drainage, slope, land use/cover and groundwater potential zone were prepared using the satellite remote sensing data, ground truth data, and secondary data. ArcGIS software was utilized to manipulate these data sets. The groundwater availability of the study was classified into different classes such as very high, high, moderate, low and very low based on its hydro-geomorphological conditions. The land use/cover map was prepared using a digital classification technique with the limited ground truth for mapping irrigated areas in the Orenburg, Russia.


2021 ◽  
Vol 6 ◽  
pp. 24-31
Author(s):  
Dmitry A. Baikin

The article analyzes the impact of oil spills on natural objects according to the remote sensing system Sentinel-2 in Eastern Siberia. Remote sensing data analysis is used to detect traces of oil products in the accident area. Conclusions about the usage of Sentinel-2 data for detecting traces of oil products were made.


Sign in / Sign up

Export Citation Format

Share Document